Ax-Schanuel and strongly minimal sets in j-reducts of differentially closed fields

Vahagn Aslanyan

Carnegie Mellon University

Macomb, Illinois
16 May 2018

The j-function

- The function $j: \mathbb{H} \rightarrow \mathbb{C}$ is a modular function of weight 0 for the modular group $\mathrm{SL}_{2}(\mathbb{Z})$ defined and analytic on the upper half-plane $\mathbb{H}:=\{z \in \mathbb{C}: \Im(z)>0\}$.

The j-function

- The function $j: \mathbb{H} \rightarrow \mathbb{C}$ is a modular function of weight 0 for the modular group $\mathrm{SL}_{2}(\mathbb{Z})$ defined and analytic on the upper half-plane $\mathbb{H}:=\{z \in \mathbb{C}: \Im(z)>0\}$.
- $j(g z)=j(z)$ for all $g \in \mathrm{SL}_{2}(\mathbb{Z})$.

The j-function

- The function $j: \mathbb{H} \rightarrow \mathbb{C}$ is a modular function of weight 0 for the modular group $\mathrm{SL}_{2}(\mathbb{Z})$ defined and analytic on the upper half-plane $\mathbb{H}:=\{z \in \mathbb{C}: \Im(z)>0\}$.
- $j(g z)=j(z)$ for all $g \in \mathrm{SL}_{2}(\mathbb{Z})$.
- By means of j the quotient $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ is identified with \mathbb{C} (thus, j is a bijection from the fundamental domain of $\mathrm{SL}_{2}(\mathbb{Z})$ to $\left.\mathbb{C}\right)$.

Modular polynomials

- $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations.

Modular polynomials

- $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations.
- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.

Modular polynomials

- $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations.
- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_{N}(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$, the function $\Phi_{N}(j(z), j(g z))$ is identically zero.

Modular polynomials

- $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations.
- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_{N}(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$, the function $\Phi_{N}(j(z), j(g z))$ is identically zero.
- Conversely, if $\Phi_{N}(j(x), j(y))=0$ for some $x, y \in \mathbb{H}$ then $y=g x$ for some $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$.

Modular polynomials

- $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations.
- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_{N}(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$, the function $\Phi_{N}(j(z), j(g z))$ is identically zero.
- Conversely, if $\Phi_{N}(j(x), j(y))=0$ for some $x, y \in \mathbb{H}$ then $y=g x$ for some $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$.
- The polynomials Φ_{N} are called modular polynomials.

Modular polynomials

- $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations.
- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_{N}(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$, the function $\Phi_{N}(j(z), j(g z))$ is identically zero.
- Conversely, if $\Phi_{N}(j(x), j(y))=0$ for some $x, y \in \mathbb{H}$ then $y=g x$ for some $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$.
- The polynomials Φ_{N} are called modular polynomials.
- $\Phi_{1}(X, Y)=X-Y$ and all the other modular polynomials are symmetric.

Modular polynomials

- $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations.
- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_{N}(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$, the function $\Phi_{N}(j(z), j(g z))$ is identically zero.
- Conversely, if $\Phi_{N}(j(x), j(y))=0$ for some $x, y \in \mathbb{H}$ then $y=g x$ for some $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$.
- The polynomials Φ_{N} are called modular polynomials.
- $\Phi_{1}(X, Y)=X-Y$ and all the other modular polynomials are symmetric.
- Two elements $w_{1}, w_{2} \in \mathbb{C}$ are called modularly independent if they do not satisfy any modular relation $\Phi_{N}\left(w_{1}, w_{2}\right)=0$.

Differential equation

- The j-function satisfies an order 3 algebraic differential equation over \mathbb{Q}. Namely, $F\left(j, j^{\prime}, j^{\prime \prime}, j^{\prime \prime \prime}\right)=0$ where

$$
F\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=\frac{y_{3}}{y_{1}}-\frac{3}{2}\left(\frac{y_{2}}{y_{1}}\right)^{2}+\frac{y_{0}^{2}-1968 y_{0}+2654208}{2 y_{0}^{2}\left(y_{0}-1728\right)^{2}} \cdot y_{1}^{2}
$$

Differential equation

- The j-function satisfies an order 3 algebraic differential equation over \mathbb{Q}. Namely, $F\left(j, j^{\prime}, j^{\prime \prime}, j^{\prime \prime \prime}\right)=0$ where

$$
F\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=\frac{y_{3}}{y_{1}}-\frac{3}{2}\left(\frac{y_{2}}{y_{1}}\right)^{2}+\frac{y_{0}^{2}-1968 y_{0}+2654208}{2 y_{0}^{2}\left(y_{0}-1728\right)^{2}} \cdot y_{1}^{2}
$$

- Thus

$$
F\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=S y+R(y)\left(y^{\prime}\right)^{2}
$$

where S denotes the Schwarzian derivative defined by

$$
S y=\frac{y^{\prime \prime \prime}}{y^{\prime}}-\frac{3}{2}\left(\frac{y^{\prime \prime}}{y^{\prime}}\right)^{2} \text { and } R(y)=\frac{y^{2}-1968 y+2654208}{2 y^{2}(y-1728)^{2}}
$$

Differential equation

- The j-function satisfies an order 3 algebraic differential equation over \mathbb{Q}. Namely, $F\left(j, j^{\prime}, j^{\prime \prime}, j^{\prime \prime \prime}\right)=0$ where

$$
F\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=\frac{y_{3}}{y_{1}}-\frac{3}{2}\left(\frac{y_{2}}{y_{1}}\right)^{2}+\frac{y_{0}^{2}-1968 y_{0}+2654208}{2 y_{0}^{2}\left(y_{0}-1728\right)^{2}} \cdot y_{1}^{2}
$$

- Thus

$$
F\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=S y+R(y)\left(y^{\prime}\right)^{2}
$$

where S denotes the Schwarzian derivative defined by $S y=\frac{y^{\prime \prime \prime}}{y^{\prime}}-\frac{3}{2}\left(\frac{y^{\prime \prime}}{y^{\prime}}\right)^{2}$ and $R(y)=\frac{y^{2}-1968 y+2654208}{2 y^{2}(y-1728)^{2}}$.

- All functions $j(g z)$ with $g \in \mathrm{SL}_{2}(\mathbb{C})$ satisfy the differential equation $F\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=0$ and in fact all solutions are of that form.

Ax-Schanuel for j

- In a differential field $\left(K ;+, \cdot,{ }^{\prime}\right)$ for a non-constant $x \in K$ define a derivation $\partial_{x}: K \rightarrow K$ by $\partial_{x}: y \mapsto \frac{y^{\prime}}{x^{\prime}}$.

Ax-Schanuel for j

- In a differential field $\left(K ;+, \cdot,,^{\prime}\right)$ for a non-constant $x \in K$ define a derivation $\partial_{x}: K \rightarrow K$ by $\partial_{x}: y \mapsto \frac{y^{\prime}}{x^{\prime}}$.
- Let $F\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)$ be the differential equation of j. Consider its two-variable version

$$
f(x, y):=F\left(y, \partial_{x} y, \partial_{x}^{2} y, \partial_{x}^{3} y\right)=0
$$

Ax-Schanuel for j

- In a differential field $(K ;+, \cdot$,$) for a non-constant x \in K$ define a derivation $\partial_{x}: K \rightarrow K$ by $\partial_{x}: y \mapsto \frac{y^{\prime}}{x^{\prime}}$.
- Let $F\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)$ be the differential equation of j. Consider its two-variable version

$$
f(x, y):=F\left(y, \partial_{x} y, \partial_{x}^{2} y, \partial_{x}^{3} y\right)=0
$$

Theorem (Pila-Tsimerman, 2015)

Let $\left(z_{i}, j_{i}\right) \in K^{2}, i=1, \ldots, n$, be non-constant solutions to the above equation. If j_{i} 's are pairwise modularly independent then

$$
\begin{equation*}
t d_{C} C\left(z_{1}, j_{1}, \partial_{z_{1}} j_{1}, \partial_{z_{1}}^{2} j_{1}, \ldots, z_{n}, j_{n}, \partial_{z_{n}} j_{n}, \partial_{z_{n}}^{2} j_{n}\right) \geq 3 n+1 . \tag{1}
\end{equation*}
$$

Ax-Schanuel without derivatives

Corollary

Let $\left(z_{i}, j_{i}\right) \in K^{2}, i=1, \ldots, n$, be non-constant with $f\left(z_{i}, j_{i}\right)=0$. If j_{i} 's are pairwise modularly independent then

$$
\operatorname{td}_{C} C(\bar{z}, \bar{j}) \geq n+1
$$

Strong minimality of $F\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=0$

Using the $A x$-Schanuel theorem for the j-function one can prove that the set $F\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=0$ is strongly minimal and geometrically trivial. This is a result of Freitag and Scanlon. I gave a new proof for this result (both proofs are based on Pila's Modular Ax-Lindemann-Weierstrass with Derivatives theorem).

j-reducts of differential fields

If K is a differential field, consider its reduct $K_{E_{j}}:=\left(K ;+, \cdot, E_{j}\right)$ where $E_{j}(x, y)$ is a binary relation interpreted as the set of solutions of the equation $f(x, y)=0$.

Basic axioms

Definition

The theory T_{j}^{0} consists of the following first-order statements about a structure K in the language $\mathfrak{L}_{j}:=\left\{+, \cdot, E_{j}, 0,1\right\}$.

A1 K is an algebraically closed field with an algebraically closed subfield $C:=C_{K}$, which is defined by $E_{j}(1, y)$. Further, $C^{2} \subseteq E_{j}$.
A2 If $(z, j) \in E_{j}$ then for any $g \in \mathrm{SL}_{2}(C)$ we have $(g z, j) \in E_{j}$.
Conversely, if for some j we have $\left(z_{1}, j\right),\left(z_{2}, j\right) \in E_{j}$ then $z_{2}=g z_{1}$ for some $g \in \operatorname{SL}_{2}(C)$.
A3 If $\left(z, j_{1}\right) \in E_{j}$ and $\Phi\left(j_{1}, j_{2}\right)=0$ for some modular polynomial $\Phi(X, Y)$ then $\left(z, j_{2}\right) \in E_{j}$.
AS If $\left(z_{i}, j_{i}\right) \in E_{j}, i=1, \ldots, n$, with $\operatorname{td}_{C} C(\bar{z}, \bar{j}) \leq n$ then $\Phi_{N}\left(j_{i}, j_{k}\right)=0$ for some N and $1 \leq i<k \leq n$ or $j_{i} \in C$ for some i.

Normal varieties

Let n be a positive integer, $k \leq n$ and $1 \leq i_{1}<\ldots<i_{k} \leq n$. Denote $\bar{i}:=\left(i_{1}, \ldots, i_{k}\right)$ and define the projection map $\mathrm{pr}_{\bar{i}}: K^{2 n} \rightarrow K^{2 k}$ by

$$
\mathrm{pr}_{\bar{i}}:\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto\left(x_{i_{1}}, \ldots, x_{i_{k}}, y_{i_{1}}, \ldots, y_{i_{k}}\right)
$$

Definition

Let K be an algebraically closed field. An irreducible algebraic variety $V \subseteq K^{2 n}$ is normal if for any $1 \leq i_{1}<\ldots<i_{k} \leq n$ we have $\operatorname{dim} \mathrm{pr}_{\bar{i}} V \geq k$. We say V is strongly normal if the strict inequality ${\operatorname{dim~} \mathrm{pr}_{i}^{-}} V>k$ holds.

Existential closedness

Consider the following statements.
EC For each normal variety $V \subseteq K^{2 n}$ the intersection $E_{j}(K) \cap V(K)$ is non-empty.
NT There is a non-constant element in K.

Existential closedness

Consider the following statements.
EC For each normal variety $V \subseteq K^{2 n}$ the intersection $E_{j}(K) \cap V(K)$ is non-empty.
NT There is a non-constant element in K.
Let T_{j} be the theory A1-A3,AS,EC,NT.

Theorem (A., 2017)

T_{j} is a first-order theory. It is consistent and complete.

Existential closedness

Consider the following statements.
EC For each normal variety $V \subseteq K^{2 n}$ the intersection $E_{j}(K) \cap V(K)$ is non-empty.
NT There is a non-constant element in K.
Let T_{j} be the theory A1-A3,AS,EC,NT.

Theorem (A., 2017)

T_{j} is a first-order theory. It is consistent and complete.

Conjecture (EC conjecture)

E_{j}-reducts of differentially closed fields satisfy $E C$. Hence, T_{j} is a complete axiomatisation of their first-order theory.

Strongly minimal sets in j-reducts

Let $\left(K ;+, \cdot,{ }^{\prime}\right)$ be a countable saturated differentially closed field and $K_{E_{j}}=\left(K:+, \cdot, E_{j}\right)$ be its j-reduct.

Strongly minimal sets in j-reducts

Let $\left(K ;+, \cdot,{ }^{\prime}\right)$ be a countable saturated differentially closed field and $K_{E_{j}}=\left(K:+, \cdot, E_{j}\right)$ be its j-reduct.

Theorem (A., 2018)

Assume the EC conjecture. Then all strongly minimal sets in $K_{E_{j}}$ are either geometrically trivial or non-orthogonal to the field of constants.

Sketch of proof

- The Ax-Schanuel theorem is a predimension inequality (in the sense of Hrushvoski).

Sketch of proof

- The Ax-Schanuel theorem is a predimension inequality (in the sense of Hrushvoski).
- One can carry out a Hrushovski construction (like pseudo-exponentiation or the exponential differential equation).

Sketch of proof

- The Ax-Schanuel theorem is a predimension inequality (in the sense of Hrushvoski).
- One can carry out a Hrushovski construction (like pseudo-exponentiation or the exponential differential equation).
- The limit structure has nice properties and the EC conjecture is equivalent to the fact that it is isomorphic to $K_{E_{j}}$.

Sketch of proof

- The Ax-Schanuel theorem is a predimension inequality (in the sense of Hrushvoski).
- One can carry out a Hrushovski construction (like pseudo-exponentiation or the exponential differential equation).
- The limit structure has nice properties and the EC conjecture is equivalent to the fact that it is isomorphic to $K_{E_{j}}$.
- We get a quantifier elimination result: every formula is equivalent to a Boolean combination of existential formulas (near model completeness). Moreover, "small" sets are existentially definable.

Sketch of proof

- The Ax-Schanuel theorem is a predimension inequality (in the sense of Hrushvoski).
- One can carry out a Hrushovski construction (like pseudo-exponentiation or the exponential differential equation).
- The limit structure has nice properties and the EC conjecture is equivalent to the fact that it is isomorphic to $K_{E_{j}}$.
- We get a quantifier elimination result: every formula is equivalent to a Boolean combination of existential formulas (near model completeness). Moreover, "small" sets are existentially definable.
- Ax-Schanuel states that any algebraic relation between several solutions of the differential equation of the j-function boils down to a modular relation between TWO solutions (which is binary, hence geometric triviality).

Thank you

