Blurrings of the j-function

Vahagn Aslanyan
University of East Anglia

$$
16 \text { June } 2020
$$

Joint work with Jonathan Kirby

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.
- $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ we define

$$
g z=\frac{a z+b}{c z+d} .
$$

- Let $j: \mathbb{H} \rightarrow \mathbb{C}$ be the modular j-function.
- j is holomorphic on \mathbb{H} and is invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$, i.e. $j(\gamma z)=j(z)$ for all $\gamma \in \operatorname{SL}_{2}(\mathbb{Z})$.
- By means of j the quotient $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ is identified with \mathbb{C} (thus, j is a bijection from the fundamental domain of $\mathrm{SL}_{2}(\mathbb{Z})$ to $\left.\mathbb{C}\right)$.

Modular polynomials

- There is a countable collection of irreducible polynomials $\Phi_{N} \in \mathbb{Z}[X, Y](N \geq 1)$, called modular polynomials, such that for any $z_{1}, z_{2} \in \mathbb{H}$

$$
\Phi_{N}\left(j\left(z_{1}\right), j\left(z_{2}\right)\right)=0 \text { for some } N \text { iff } z_{2}=g z_{1} \text { for some } g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})
$$

- $\Phi_{1}(X, Y)=X-Y$ and all the other modular polynomials are symmetric.

Definition

A special subvariety of \mathbb{C}^{n} (with coordinates \bar{w}) is an irreducible component of a variety defined by modular equations, i.e. equations of the form $\Phi_{N}\left(w_{k}, w_{l}\right)=0$ for some $1 \leq k, I \leq n$ where Φ_{N} is a modular polynomial.

Modular Schanuel and EC

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, j\left(z_{1}\right), \ldots, j\left(z_{n}\right)\right) \geq n$.

By abuse of notation we will let j denote all Cartesian powers of itself. Similarly we let $\Gamma_{j}:=\left\{(\bar{z}, j(\bar{z})): \bar{z} \in \mathbb{H}^{n}\right\} \subseteq \mathbb{C}^{2 n}$ be the graph of j in $\mathbb{H}^{n} \times \mathbb{C}^{n}$ for any n.

Conjecture (Existential Closedness for j)

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{n}$ be an irreducible j-broad, j-free and \mathbb{H}-free variety defined over \mathbb{C}. Then $V \cap \Gamma_{j} \neq \emptyset$.

This is an analogue of Zilber's Exponential Closedness conjecture.

j-broad and j-free varieties

We will use the following notation.

- (n) := $(1, \ldots, n)$, and $\bar{k} \subseteq(n)$ means that $\bar{k}=\left(k_{1}, \ldots, k_{l}\right)$ for some $1 \leq k_{1}<\ldots<k_{l} \leq n$.
- The coordinates of $\mathbb{C}^{2 n}$ will be denoted by $\left(z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{n}\right)$.
- For $\bar{k}=\left(k_{1}, \ldots, k_{l}\right) \subseteq(n)$ define

$$
\begin{aligned}
& \pi_{\bar{k}}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{\prime}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(z_{k_{1}}, \ldots, z_{k_{l}}\right), \\
& \operatorname{pr}_{\bar{k}}: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{2 \prime}:(\bar{z}, \bar{w}) \mapsto\left(\pi_{\bar{k}}(\bar{z}), \pi_{\bar{k}}(\bar{w})\right) .
\end{aligned}
$$

Definition

Let $V \subseteq \mathbb{C}^{2 n}$ be an algebraic variety.

- V is j-broad if for any $\bar{k} \subseteq(n)$ of length I we have $\operatorname{dim} \operatorname{pr}_{\bar{k}} V \geq I$.
- V is j-free if no relation of the form $\Phi_{N}\left(w_{i}, w_{k}\right)=0$ holds on V.
- V is \mathbb{H}-free if no relation of the form $z_{k}=g z_{i}$ holds on V where $g \in \mathrm{GL}_{2}(\mathbb{Q})$.

What is known

- A differential analogue of the EC conjecture for j (A.-Eterović-Kirby). In a differentially closed field j-broad (and j-free) varieties intersect the differential equation of the j-function.
- EC holds for varieties with dominant projection on \mathbb{H}^{n} (Eterović-Herrero).
- We will show that EC holds for blurrings of Γ_{j} by certain subgroups of $\mathrm{GL}_{2}(\mathbb{C})$.
- These are analogous to some results on the exponential function (which in turn have been motivated by Zilber's Exponential Closedness conjecture), but there are important differences.

Blurred j-function

Definition

Given a subgroup $G \subseteq G L_{2}(\mathbb{C})$, let $B_{j}^{G} \subseteq \mathbb{C}^{2}$ be the relation $\{(z, j(g z)): g \in G, g z \in \mathbb{H}\}$. By abuse of notation, for every n we also let B_{j}^{G} denote the set

$$
\left\{\left(z_{1}, \ldots, z_{n}, j\left(g_{1} z_{1}\right), \ldots, j\left(g_{n} z_{n}\right)\right): g_{k} \in G, g_{k} z_{k} \in \mathbb{H} \text { for all } k\right\}
$$

Example

- When $G \subseteq S_{2}(\mathbb{Z})$, we have $B_{j}^{G}=\Gamma_{j}$.
- $B_{j}^{G L_{2}(\mathbb{C})}=\mathbb{C}^{2}$.
- $\mathrm{B}_{j}^{\mathrm{GL}(\mathbb{R})}=\mathbb{H} \times \mathbb{C}$.
- $\mathrm{A}_{j}:=\mathrm{B}_{j}^{\mathrm{GL}}{ }_{2}^{+}(\mathbb{Q})$ is the approximate j-function.

EC for blurred j

Theorem

If $V \subseteq \mathbb{C}^{2 n}$ is a j-broad and j-free variety and $G \subseteq \mathrm{GL}_{2}(\mathbb{C})$ is a dense subgroup in the complex topology, then $V \cap \mathrm{~B}_{j}^{G}$ is dense in V, and hence it is non-empty.

This is an analogue of Kirby's theorem for blurred complex exponentiation. For the j-function we can do better.

Theorem

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{n}$ be an irreducible j-broad and j-free variety and let $G \subseteq \mathrm{GL}_{2}^{+}(\mathbb{R})$ be a dense subgroup (in the Euclidean topology). Then $V \cap \mathrm{~B}_{j}^{G}$ is dense in V in the complex topology. In particular, $V \cap \mathrm{~A}_{j} \neq \emptyset$.

EC for j with derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by

$$
J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)
$$

We extend J to \mathbb{H}^{n} by defining

$$
J: \bar{z} \mapsto\left(j(\bar{z}), j^{\prime}(\bar{z}), j^{\prime \prime}(\bar{z})\right)
$$

where $j^{(k)}(\bar{z})=\left(j^{(k)}\left(z_{1}\right), \ldots, j^{(k)}\left(z_{n}\right)\right)$ for $k=0,1,2$.
Let $\Gamma_{J} \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of J for any n.
We consider only the first two derivatives of j, for the higher derivatives are algebraic over those.

Conjecture (Existential Closedness for J)

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be an irreducible J-broad, J-free and \mathbb{H}-free variety defined over \mathbb{C}. Then $V \cap \Gamma_{J} \neq \emptyset$.

J-broad and J-free varieties

- The coordinates of $\mathbb{C}^{4 n}$ will be denoted by $\left(\bar{z}, \bar{w}, \bar{w}_{1}, \bar{w}_{2}\right)$.
- For a tuple $\bar{k}=\left(k_{1}, \ldots, k_{l}\right) \subseteq(n)$ define a map

$$
\operatorname{Pr}_{\bar{k}}: \mathbb{C}^{4 n} \rightarrow \mathbb{C}^{4 l}:\left(\bar{z}, \bar{w}, \bar{w}_{1}, \bar{w}_{2}\right) \mapsto\left(\pi_{\bar{k}}(\bar{z}), \pi_{\bar{k}}(\bar{w}), \pi_{\bar{k}}\left(\bar{w}_{1}\right), \pi_{\bar{k}}\left(\bar{w}_{2}\right)\right)
$$

Definition

- An algebraic variety $V \subseteq \mathbb{C}^{4 n}$ is J-broad if for any $\bar{k} \subseteq(n)$ of length / we have $\operatorname{dim} \operatorname{Pr}_{\bar{k}} V \geq 3 /$.
- An algebraic variety $V \subseteq \mathbb{C}^{4 n}$ is J-free if no relation of the form $\Phi_{N}\left(w_{i}, w_{k}\right)=0$ holds on V.

Blurred J-function

Definition

For a subgroup $G \subseteq \mathrm{GL}_{2}(\mathbb{C})$ define a relation

$$
\mathrm{B}_{J}^{G}:=\left\{\left(z, j(g z), \frac{d}{d z} j(g z), \frac{d^{2}}{d z^{2}} j(g z)\right): g \in G, g z \in \mathbb{H}\right\} \subseteq \mathbb{C}^{4} .
$$

By abuse of notation for each n we let B_{J}^{G} denote the set

$$
\left\{\left(\bar{z}, \bar{w}, \bar{w}_{1}, \bar{w}_{2}\right):\left(z_{k}, w_{k}, w_{1, k}, w_{2, k}\right) \in \mathrm{B}_{J}^{G} \text { for all } k\right\} \subseteq \mathbb{C}^{4 n}
$$

Theorem

Let $V \subseteq \mathbb{C}^{4 n}$ be an irreducible J-broad and J-free variety, and let $G \subseteq \mathrm{GL}_{2}(\mathbb{C})$ be a subgroup which is dense in the complex topology. Then $V \cap \mathrm{~B}_{J}^{G}$ is dense in V in the complex topology.

Ax-Schanuel

Theorem (Pila-Tsimerman)

Let $V \subseteq \mathbb{C}^{4 n}$ be an algebraic variety and let U be an analytic component of the intersection $V \cap \Gamma_{J}$. If $\operatorname{dim} U>\operatorname{dim} V-3 n$ and no coordinate is constant on $\operatorname{Pr}_{w} U$ then $\operatorname{Pr}_{w} U$ is contained in a proper special subvariety of \mathbb{C}^{n}.

Here Pr_{w} is the projection $\left(\bar{z}, \bar{w}, \bar{w}_{1}, \bar{w}_{2}\right) \mapsto \bar{w}$.

Theorem (Ax-Schanuel without derivatives)

Let $V \subseteq \mathbb{C}^{2 n}$ be an algebraic variety and let U be an analytic component of the intersection $V \cap \Gamma_{j}$. If $\operatorname{dim} U>\operatorname{dim} V-n$ and no coordinate is constant on $\mathrm{pr}_{w} U$ then $\mathrm{pr}_{w} U$ is contained in a proper special subvariety of \mathbb{C}^{n}.

Here pr_{w} is the projection $(\bar{z}, \bar{w}) \mapsto \bar{w}$.

Uniform Ax-Schanuel

For $g \in \mathrm{GL}_{2}(\mathbb{C})$ let $\mathbb{H}^{g}:=g^{-1} \mathbb{H}$ and let $j_{g}: \mathbb{H}^{g} \rightarrow \mathbb{C}$ be the function $j_{g}(z)=j(g z)$. For a tuple $\bar{g}=\left(g_{1}, \ldots, g_{n}\right) \in \mathrm{GL}_{2}(\mathbb{C})^{n}$ let $\mathbb{H}^{\bar{g}}:=\mathbb{H}^{g_{1}} \times \cdots \times \mathbb{H}^{g_{n}}$ and consider the function

$$
j \bar{g}: \mathbb{H}^{\bar{g}} \rightarrow \mathbb{C}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(j_{g_{1}}\left(z_{1}\right), \ldots, j_{g_{n}}\left(z_{n}\right)\right)
$$

We let $\Gamma_{j}^{\bar{g}} \subseteq \mathbb{H}^{\bar{g}} \times \mathbb{C}^{n}$ denote the graph of $j_{\bar{g}}$. Then $\mathrm{B}_{j}^{G}=\bigcup_{\bar{g} \in G^{n}} \Gamma_{j}^{\bar{g}}$.

Theorem (Uniform Ax-Schanuel for j)

Let $\left(V_{\bar{s}}\right)_{\bar{s} \in Q}$ be a parametric family of algebraic varieties in $\mathbb{C}^{2 n}$. Then there is a finite collection Σ of proper special subvarieties of \mathbb{C}^{n} such that for every $\bar{s} \in Q(\mathbb{C})$ and every $\bar{g} \in \mathrm{GL}_{2}(\mathbb{C})^{n}$, if U is an analytic component of the intersection $V_{\bar{s}} \cap \Gamma_{j}^{\bar{g}}$ with $\operatorname{dim} U>\operatorname{dim} V_{\bar{s}}-n$, and no coordinate is constant on $\mathrm{pr}_{w} U$, then $\mathrm{pr}_{w} U$ is contained in some $T \in \Sigma$.

This is equivalent to a differential algebraic statement which follows from (differential) Ax-Schanuel by a compactness argument.

EC for blurred j - proof

Let $\mathcal{G}:=\left(\begin{array}{ll}1 & \mathbb{C} \\ 0 & 1\end{array}\right) \subseteq \mathrm{GL}_{2}(\mathbb{C})$.

Theorem

If $V \subseteq \mathbb{C}^{2 n}$ is a j-broad and j-free variety and G is a dense subgroup of \mathcal{G} in the complex topology then $V \cap B_{j}^{G} \neq \emptyset$.

- By j-broadness $\operatorname{dim} V \geq n$. We may assume $\operatorname{dim} V=n$ by intersecting V with generic hyperplanes and reducing its dimension.
- Pick a fundamental domain $\mathbb{F} \subseteq \mathbb{H}$ and let $j^{-1}: \mathbb{C} \rightarrow \mathbb{F}$ be the inverse of j. It is holomorphic on $\mathbb{C}^{\prime}:=j\left(\mathbb{F}^{0}\right)$.
- Define a map $\theta: \mathbb{C}^{2 n} \rightarrow \mathcal{G}^{n}:(\bar{z}, \bar{w}) \mapsto\left(g_{1}, \ldots, g_{n}\right)$, where

$$
g_{k}:=\left(\begin{array}{cc}
1 & j^{-1}\left(w_{k}\right)-z_{k} \\
0 & 1
\end{array}\right) \in \mathcal{G} .
$$

- Clearly, $j\left(g_{k} z_{k}\right)=w_{k}$, so $\left(z_{k}, w_{k}\right) \in \Gamma_{j}^{g_{k}}$.

Proof (continued)

- For $\bar{k}=\left(k_{1}, \ldots, k_{l}\right) \subseteq(1, \ldots, n)$ and $\bar{s} \in \operatorname{pr}_{\bar{k}} V \subseteq \mathbb{C}^{2 l}$ consider the fibre $V_{\bar{s}} \subseteq \mathbb{C}^{2(n-l)}$ above \bar{s}. This gives a parametric family of algebraic varieties. Let $\Sigma_{\bar{k}}$ be the collection of special subvarieties of \mathbb{C}^{n-1} given by uniform Ax-Schanuel for this family.
- By the fibre dimension theorem there is a proper Zariski closed subset $W_{\bar{k}}$ of $\mathrm{pr}_{\bar{k}} V$ such that if $\bar{s} \notin W_{\bar{k}}$ then $\operatorname{dim} V_{\bar{s}}=\operatorname{dim} V-\operatorname{dim} \operatorname{pr}_{\bar{k}} V \leq n-I$ where the last inequality follows from the assumption that V is j-broad.
- Consider the set

$$
V^{\prime}:=V^{\text {reg }} \cap\left\{\bar{e} \in V: \operatorname{pr}_{\bar{k}} \bar{e} \notin W_{\bar{k}}, \operatorname{pr}_{w} \operatorname{pr}_{\bar{k}} \bar{e} \notin \bigcup_{S \in \Sigma_{\bar{k}}} S, \text { for all } \bar{k}\right\}
$$

Then V^{\prime} is a Zariski open subset of V and $V^{\prime} \neq \emptyset$ as V is j-free.

- This allows us to apply Ax-Schanuel and the fibre dimension theorem.

Proof (continued)

- Claim. The fibres of the restriction $\zeta:=\left.\theta\right|_{V^{\prime}}$ are discrete. Proof. Indeed, $\left(\zeta^{-1}\right)(\bar{g}) \subseteq V^{\prime} \cap \Gamma_{j}^{\bar{g}}$. Let U be an analytic component. Assume no coordinate is constant on U. Then, by uniform Ax-Schanuel, $\operatorname{dim} U=\operatorname{dim} V^{\prime}-n=0$. If U has constant coordinates then we work with the fibre of U above those constants.
- By Remmert's open mapping theorem the map $\zeta: V^{\prime} \rightarrow \mathcal{G}^{n}$ is open (since $\operatorname{dim} V^{\prime}=\operatorname{dim} \mathcal{G}^{n}=n$).
- Therefore $\zeta\left(V^{\prime}\right) \cap G^{n} \neq \emptyset$ and $V^{\prime} \cap B_{j}^{G} \neq \emptyset$.

EC for j - real version

Consider the group $\mathcal{G}:=\left(\begin{array}{cc}\mathbb{R}^{>0} & \mathbb{R} \\ 0 & 1\end{array}\right) \subseteq \mathrm{GL}_{2}^{+}(\mathbb{R})$.

Theorem

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{n}$ be an irreducible j-broad and j-free variety defined over \mathbb{C}, and let $G \subseteq \mathcal{G}$ be a dense subgroup (in the Euclidean topology). Then $V \cap B_{j}^{G} \neq \emptyset$. In particular, this holds for $G=G L_{2}(\mathbb{Q}) \cap \mathcal{G}$.

- Assume $\operatorname{dim} V=n$.
- Let $V^{\prime} \subseteq V$ be a non-empty Zariski open subset defined as above. Recall that restricting to V^{\prime} allows us to apply Ax-Schanuel and the fibre dimension theorem.

Proof (continued)

- Pick a fundamental domain $\mathbb{F} \subseteq \mathbb{H}$ and let $j^{-1}: \mathbb{C} \rightarrow \mathbb{F}$ be the inverse of j. It is definable in $\mathbb{R}_{\text {an, }}$ exp .
- \mathcal{G} acts transitively on \mathbb{H}. Let $z_{1}=x+i y$ and $z_{2}=u+i v$ where $x, u \in \mathbb{R}, y, v \in \mathbb{R}^{>0}$. Then

$$
g\left(z_{1}, z_{2}\right):=\left(\begin{array}{cc}
\frac{v}{y} & u-\frac{x v}{y} \\
0 & 1
\end{array}\right) \in \mathcal{G}
$$

maps z_{1} to z_{2}, and it is the only element of \mathcal{G} with that property.

- Define a map

$$
\begin{gathered}
\theta: \mathbb{H}^{n} \times \mathbb{C}^{n} \rightarrow \mathcal{G}^{n} \\
\theta:(\bar{z}, \bar{w}) \mapsto\left(g\left(z_{1}, j^{-1}\left(w_{1}\right)\right), \ldots, g\left(z_{n}, j^{-1}\left(w_{n}\right)\right)\right),
\end{gathered}
$$

and let $\zeta:=\theta \mid V^{\prime}$ be the restriction of θ to V^{\prime}.

- ζ is definable in $\mathbb{R}_{\text {an }, \exp }$.

Proof (continued)

- Claim. The fibres of the restriction $\zeta:=\left.\theta\right|_{V^{\prime}}$ are finite. Proof. As above, $\left(\zeta^{-1}\right)(\bar{g}) \subseteq V^{\prime} \cap \Gamma_{j}^{\bar{g}}$. By Ax-Schanuel, $\left(\zeta^{-1}\right)(\bar{g})$ is discrete. By o-minimality it must be finite.
- Thus, $\zeta: V^{\prime} \rightarrow \mathcal{G}^{n}$ has finite fibres and $\operatorname{dim}_{\mathbb{R}} V^{\prime}=2 n$.
- Hence $\operatorname{dim}_{\mathbb{R}} \zeta\left(V^{\prime}\right)=2 n=\operatorname{dim}_{\mathbb{R}} \mathcal{G}^{n}$ and so $\zeta\left(V^{\prime}\right) \subseteq \mathcal{G}^{n}$ has non-empty interior.
- Since $G \subseteq \mathcal{G}$ is dense, $G^{n} \cap \zeta\left(V^{\prime}\right) \neq \emptyset$ and and $V^{\prime} \cap \mathrm{B}_{j}^{G} \neq \emptyset$.

j-derivations

Definition

A j-derivation on the field of complex numbers is a derivation $\delta: \mathbb{C} \rightarrow \mathbb{C}$ such that for any $z \in \mathbb{H}$ we have

$$
\delta j(z)=j^{\prime}(z) \delta(z), \quad \delta j^{\prime}(z)=j^{\prime \prime}(z) \delta(z), \quad \delta j^{\prime \prime}(z)=j^{\prime \prime \prime}(z) \delta(z)
$$

The space of j-derivations is denoted by $j \operatorname{Der}(\mathbb{C})$.
Let

$$
C:=\bigcap_{\delta \in j \operatorname{Der}(\mathbb{C})} \operatorname{ker} \delta .
$$

Then C is a countable algebraically closed subfield of \mathbb{C} and $j(C \cap \mathbb{H})=C$. This fact and the above definition are due to Eterović.

Stability

$$
\text { Let } \mathbb{C}_{\mathrm{B}_{j}^{G}}:=\left(\mathbb{C}_{;}+, \cdot, \mathrm{B}_{j}^{G}\right) \text { and } \mathbb{C}_{\mathrm{B}_{j}^{G}}:=\left(\mathbb{C} ;+, \cdot, \mathrm{B}_{j}^{G}\right) \text {. }
$$

Theorem

Let C be as above and $G=\mathrm{GL}_{2}(C)$. Then $\mathbb{C}_{\mathrm{B}_{j}^{G}}$ is elementarily equivalent to a reduct of a differentially closed field. In particular, $\operatorname{Th}\left(\mathbb{C}_{\mathrm{B}_{j}^{G}}\right)$ is ω-stable of Morley rank ω and is near model complete.

We also get an axiomatisation of $\operatorname{Th}\left(\mathbb{C}_{\mathrm{B}_{j}}\right)$. It consists of basic axioms, functional equations of $j, A x-S c h a n u e l ~ o v e r ~ C ~(f o l l o w s ~ f r o m ~ A x-S c h a n u e l, ~$ and also from a theorem of Eterović), and Existential Closedness. A similar theorem holds for $\mathbb{C}_{B_{j}}$.

Quasiminimality

Theorem

Let C be as above and $G=\mathrm{GL}_{2}(C)$. Then the structures $\mathbb{C}_{\mathrm{B}_{j}^{G}}$ and $\mathbb{C}_{\mathrm{B}_{j}^{G}}$ are quasiminimal (every definable set is countable or co-countable).

Question

For which proper subgroups G of $\mathrm{PGL}_{2}(\mathbb{C})$ is $\mathbb{C}_{\mathrm{B}_{j}^{G}}$ quasiminimal?

- When G is uncountable, the fibres of B_{j}^{G} above the second coordinate are uncountable.
- If $G \subseteq \mathrm{PGL}_{2}(\mathbb{R})$, then the projection of B_{j}^{G} on the first coordinate is \mathbb{H}.
- When G is finite then the fibres of B_{j}^{G} above the first coordinate may be finite and of different cardinalities which allows one to define an uncountable co-uncountable set.
- It seems plausible that $\mathbb{C}_{\mathrm{B}_{j}^{G}}$ is quasiminimal if and only if $G \nsubseteq \mathrm{PGL}_{2}(\mathbb{R})$ and G is countably infinite.

Thank you

