Existential Closedness and Zilber-Pink for $j, j^{\prime}, j^{\prime \prime}$

Vahagn Aslanyan
University of Leeds
LYMoTS
27 January 2023

Three conjectures

I am going to talk about three conjectures about the modular j-function together with its derivatives - Schanuel, Existential Closedness, and Zilber-Pink.

Three conjectures

I am going to talk about three conjectures about the modular j-function together with its derivatives - Schanuel, Existential Closedness, and Zilber-Pink.

Why are they important?

Three conjectures

I am going to talk about three conjectures about the modular j-function together with its derivatives - Schanuel, Existential Closedness, and Zilber-Pink.

Why are they important?

- General model-theoretic context.

Three conjectures

I am going to talk about three conjectures about the modular j-function together with its derivatives - Schanuel, Existential Closedness, and Zilber-Pink.

Why are they important?

- General model-theoretic context.
- Schanuel is a special case of the generalised period conjecture.

Three conjectures

I am going to talk about three conjectures about the modular j-function together with its derivatives - Schanuel, Existential Closedness, and Zilber-Pink.

Why are they important?

- General model-theoretic context.
- Schanuel is a special case of the generalised period conjecture.
- In the differential setting it is natural and often necessary to include derivatives.

Three conjectures

I am going to talk about three conjectures about the modular j-function together with its derivatives - Schanuel, Existential Closedness, and Zilber-Pink.

Why are they important?

- General model-theoretic context.
- Schanuel is a special case of the generalised period conjecture.
- In the differential setting it is natural and often necessary to include derivatives.
- Many approaches to these conjectures (even without derivatives) involve techniques where we have to deal with derivatives.

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.
- $G L_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ we define

$$
g z=\frac{a z+b}{c z+d} .
$$

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.
- $G L_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ we define

$$
g z=\frac{a z+b}{c z+d}
$$

- Let $j: \mathbb{H} \rightarrow \mathbb{C}$ be the modular j-function.

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.
- $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ we define

$$
g z=\frac{a z+b}{c z+d}
$$

- Let $j: \mathbb{H} \rightarrow \mathbb{C}$ be the modular j-function.
- j is holomorphic on \mathbb{H} and is invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$, i.e. $j(\gamma z)=j(z)$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.

Modular polynomials

- There is a countable collection of irreducible polynomials $\Phi_{N} \in \mathbb{Z}[X, Y](N \geq 1)$, called modular polynomials, such that for any $z_{1}, z_{2} \in \mathbb{H}$

$$
\Phi_{N}\left(j\left(z_{1}\right), j\left(z_{2}\right)\right)=0 \text { for some } N \text { iff } z_{2}=g z_{1} \text { for some } g \in \mathrm{GL}_{2}^{+}(\mathbb{Q}) .
$$

Modular polynomials

- There is a countable collection of irreducible polynomials $\Phi_{N} \in \mathbb{Z}[X, Y](N \geq 1)$, called modular polynomials, such that for any $z_{1}, z_{2} \in \mathbb{H}$

$$
\Phi_{N}\left(j\left(z_{1}\right), j\left(z_{2}\right)\right)=0 \text { for some } N \text { iff } z_{2}=g z_{1} \text { for some } g \in \mathrm{GL}_{2}^{+}(\mathbb{Q}) .
$$

- $\Phi_{1}(X, Y)=X-Y$ and all the other modular polynomials are symmetric.

Modular Schanuel and Existential Closedness

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, j\left(z_{1}\right), \ldots, j\left(z_{n}\right)\right) \geq n$.

Modular Schanuel and Existential Closedness

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, j\left(z_{1}\right), \ldots, j\left(z_{n}\right)\right) \geq n$.

By abuse of notation we will let j denote all Cartesian powers of itself. Similarly we let $\Gamma_{j}:=\left\{(\bar{z}, j(\bar{z})): \bar{z} \in \mathbb{H}^{n}\right\} \subseteq \mathbb{C}^{2 n}$ be the graph of j in $\mathbb{H}^{n} \times \mathbb{C}^{n}$ for any n.

Modular Schanuel and Existential Closedness

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, j\left(z_{1}\right), \ldots, j\left(z_{n}\right)\right) \geq n$.

By abuse of notation we will let j denote all Cartesian powers of itself. Similarly we let $\Gamma_{j}:=\left\{(\bar{z}, j(\bar{z})): \bar{z} \in \mathbb{H}^{n}\right\} \subseteq \mathbb{C}^{2 n}$ be the graph of j in $\mathbb{H}^{n} \times \mathbb{C}^{n}$ for any n.

Conjecture (Modular Existential Closedness)

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{n}$ be an irreducible froad (free and broad) variety defined over \mathbb{C}. Then $V \cap \Gamma_{j} \neq \emptyset$.

This is an analogue of Zilber's Exponential Closedness conjecture.

Froad varieties

We will use the following notation.

- (n) := $(1, \ldots, n)$, and $\bar{k} \subseteq(n)$ means that $\bar{k}=\left(k_{1}, \ldots, k_{l}\right)$ for some $1 \leq k_{1}<\ldots<k_{l} \leq n$.
- The coordinates of $\mathbb{C}^{2 n}$ will be denoted by $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.
- For $\bar{k}=\left(k_{1}, \ldots, k_{l}\right) \subseteq(n)$ define

$$
\begin{aligned}
& \operatorname{pr}_{\bar{k}}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{\prime}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{k_{1}}, \ldots, x_{k_{l}}\right) \\
& \operatorname{pr}_{\bar{k}}: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{2 \prime}:(\bar{x}, \bar{y}) \mapsto\left(\operatorname{pr}_{\bar{k}}(\bar{x}), \operatorname{pr}_{\bar{k}}(\bar{y})\right)
\end{aligned}
$$

Froad varieties

We will use the following notation.

- (n) $:=(1, \ldots, n)$, and $\bar{k} \subseteq(n)$ means that $\bar{k}=\left(k_{1}, \ldots, k_{l}\right)$ for some $1 \leq k_{1}<\ldots<k_{l} \leq n$.
- The coordinates of $\mathbb{C}^{2 n}$ will be denoted by $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.
- For $\bar{k}=\left(k_{1}, \ldots, k_{l}\right) \subseteq(n)$ define

$$
\begin{aligned}
& \operatorname{pr}_{\bar{k}}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{\prime}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{k_{1}}, \ldots, x_{k_{l}}\right), \\
& \operatorname{pr}_{\bar{k}}: \mathbb{C}^{2 n} \rightarrow \mathbb{C}^{2 \prime}:(\bar{x}, \bar{y}) \mapsto\left(\operatorname{pr}_{\bar{k}}(\bar{x}), \operatorname{pr}_{\bar{k}}(\bar{y})\right) .
\end{aligned}
$$

Definition

Let $V \subseteq \mathbb{C}^{2 n}$ be an algebraic variety.

- V is broad if for any $\bar{k} \subseteq(n)$ of length I we have $\operatorname{dim} \mathrm{pr}_{\bar{k}} V \geq I$.
- V is free if no coordinate is constant on V, no relation of the form $\Phi_{N}\left(y_{i}, y_{k}\right)=0$ holds on V, and no relation of the form $x_{k}=g x_{i}$ holds on V where $g \in G L_{2}(\mathbb{Q})$.
- V is froad if it is free and broad.

Modular EC with Derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by $J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)$.

Modular EC with Derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by $J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)$.
We extend J to \mathbb{H}^{n} by defining $J: \bar{z} \mapsto\left(j(\bar{z}), j^{\prime}(\bar{z}), j^{\prime \prime}(\bar{z})\right)$ where $j^{(k)}(\bar{z})=\left(j^{(k)}\left(z_{1}\right), \ldots, j^{(k)}\left(z_{n}\right)\right)$ for $k=0,1,2$.

Modular EC with Derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by $J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)$.
We extend J to \mathbb{H}^{n} by defining $J: \bar{z} \mapsto\left(j(\bar{z}), j^{\prime}(\bar{z}), j^{\prime \prime}(\bar{z})\right)$ where $j^{(k)}(\bar{z})=\left(j^{(k)}\left(z_{1}\right), \ldots, j^{(k)}\left(z_{n}\right)\right)$ for $k=0,1,2$.
Let $\Gamma, \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of J for any n.

Modular EC with Derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by $J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)$.
We extend J to \mathbb{H}^{n} by defining $J: \bar{z} \mapsto\left(j(\bar{z}), j^{\prime}(\bar{z}), j^{\prime \prime}(\bar{z})\right)$ where $j^{(k)}(\bar{z})=\left(j^{(k)}\left(z_{1}\right), \ldots, j^{(k)}\left(z_{n}\right)\right)$ for $k=0,1,2$.
Let $\Gamma_{J} \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of J for any n.
We consider only the first two derivatives of j, for the higher derivatives are algebraic over those.

Modular EC with Derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by $J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)$.
We extend J to \mathbb{H}^{n} by defining $J: \bar{z} \mapsto\left(j(\bar{z}), j^{\prime}(\bar{z}), j^{\prime \prime}(\bar{z})\right)$ where $j^{(k)}(\bar{z})=\left(j^{(k)}\left(z_{1}\right), \ldots, j^{(k)}\left(z_{n}\right)\right)$ for $k=0,1,2$.
Let $\Gamma, \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of J for any n.
We consider only the first two derivatives of j, for the higher derivatives are algebraic over those.

Conjecture (Modular Schanuel Conjecture with Derivatives)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}(\bar{z}, J(\bar{z})) \geq 3 n$.

Modular EC with Derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by $J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)$.
We extend J to \mathbb{H}^{n} by defining $J: \bar{z} \mapsto\left(j(\bar{z}), j^{\prime}(\bar{z}), j^{\prime \prime}(\bar{z})\right)$ where $j^{(k)}(\bar{z})=\left(j^{(k)}\left(z_{1}\right), \ldots, j^{(k)}\left(z_{n}\right)\right)$ for $k=0,1,2$.
Let $\Gamma_{J} \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of J for any n.
We consider only the first two derivatives of j, for the higher derivatives are algebraic over those.

Conjecture (Modular Schanuel Conjecture with Derivatives)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}(\bar{z}, J(\bar{z})) \geq 3 n$.

Conjecture (Modular Existential Closedness with Derivatives)

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be an irreducible froad variety defined over \mathbb{C}. Then $V \cap \Gamma_{J} \neq \emptyset$.

Froad varieties

- The coordinates of $\mathbb{C}^{4 n}$ will be denoted by ($\left.\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right)$.
- For a tuple $\bar{k}=\left(k_{1}, \ldots, k_{l}\right) \subseteq(n)$ define a map

$$
\operatorname{pr}_{\bar{k}}: \mathbb{C}^{4 n} \rightarrow \mathbb{C}^{4 l}:\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right) \mapsto\left(\operatorname{pr}_{\bar{k}}(\bar{x}), \operatorname{pr}_{\bar{k}}(\bar{y}), \operatorname{pr}_{\bar{k}}\left(\bar{y}^{\prime}\right), \operatorname{pr}_{\bar{k}}\left(\bar{y}^{\prime \prime}\right)\right) .
$$

Froad varieties

- The coordinates of $\mathbb{C}^{4 n}$ will be denoted by ($\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}$).
- For a tuple $\bar{k}=\left(k_{1}, \ldots, k_{l}\right) \subseteq(n)$ define a map

$$
\operatorname{pr}_{\bar{k}}: \mathbb{C}^{4 n} \rightarrow \mathbb{C}^{4 l}:\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right) \mapsto\left(\operatorname{pr}_{\bar{k}}(\bar{x}), \operatorname{pr}_{\bar{k}}(\bar{y}), \operatorname{pr}_{\bar{k}}\left(\bar{y}^{\prime}\right), \operatorname{pr}_{\bar{k}}\left(\bar{y}^{\prime \prime}\right)\right) .
$$

Definition

- An algebraic variety $V \subseteq \mathbb{C}^{4 n}$ is broad if for any $\bar{k} \subseteq(n)$ of length / we have $\operatorname{dim} \mathrm{pr}_{\bar{k}} V \geq 3$.
- $V \subseteq \mathbb{C}^{4 n}$ is free if its projection to the first $2 n$ coordinates is free.
- V is froad if it is free and broad.

MSCD with special points

Definition

- An irreducible subvariety $U \subseteq \mathbb{H}^{n}$ is called $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special if it is defined by some equations of the form $z_{i}=g_{i, k} z_{k}, i \neq k$, with $g_{i, k} \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$, and some equations of the form $z_{i}=\tau_{i}$ where $\tau_{i} \in \mathbb{H}$ is a quadratic number.
- For a $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special variety U we denote by $\langle U\rangle$ the Zariski closure of the graph of the restriction $J \|_{U}$ (i.e. the set $\{(\bar{z}, J(\bar{z})): \bar{z} \in U\}$) over $\mathbb{Q}^{\text {alg }}$.
- The $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special closure of an irreducible variety $W \subseteq \mathbb{H}^{n}$ is the smallest $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special variety containing W.

MSCD with special points

Definition

- An irreducible subvariety $U \subseteq \mathbb{H}^{n}$ is called $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special if it is defined by some equations of the form $z_{i}=g_{i, k} z_{k}, i \neq k$, with $g_{i, k} \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$, and some equations of the form $z_{i}=\tau_{i}$ where $\tau_{i} \in \mathbb{H}$ is a quadratic number.
- For a $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special variety U we denote by $\langle U\rangle$ the Zariski closure of the graph of the restriction J_{U} (i.e. the set $\{(\bar{z}, J(\bar{z})): \bar{z} \in U\}$) over $\mathbb{Q}^{\text {alg }}$.
- The $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special closure of an irreducible variety $W \subseteq \mathbb{H}^{n}$ is the smallest $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special variety containing W.

Conjecture (MSCD with Special Points)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be arbitrary and let $U \subseteq \mathbb{H}^{n}$ be the $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special closure of $\left(z_{1}, \ldots, z_{n}\right)$. Then $\operatorname{td} \mathbb{Q} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, J\left(z_{1}\right), \ldots, J\left(z_{n}\right)\right) \geq \operatorname{dim}\langle U\rangle-\operatorname{dim} U$.

Defining $\langle U\rangle$ algebraically

The coordinates of $\mathbb{C}^{4 n}$ are denoted by $\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right)$. Assume U has no constant coordinates. Let the first two coordinates of U be related, i.e. $x_{2}=g x_{1}$ for some $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$, and let $\Phi(j(z), j(g z))=0$ for some modular polynomial Φ.

Defining $\langle U\rangle$ algebraically

The coordinates of $\mathbb{C}^{4 n}$ are denoted by $\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right)$.
Assume U has no constant coordinates. Let the first two coordinates of U be related, i.e. $x_{2}=g x_{1}$ for some $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$, and let $\Phi(j(z), j(g z))=0$ for some modular polynomial Φ. Differentiating with respect to z we get

$$
\frac{\partial \Phi}{\partial Y_{1}}(j(z), j(g z)) \cdot j^{\prime}(z)+\frac{\partial \Phi}{\partial Y_{2}}(j(z), j(g z)) \cdot j^{\prime}(g z) \cdot \frac{a d-b c}{(c z+d)^{2}}=0
$$

Defining $\langle U\rangle$ algebraically

The coordinates of $\mathbb{C}^{4 n}$ are denoted by $\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right)$.
Assume U has no constant coordinates. Let the first two coordinates of U be related, i.e. $x_{2}=g x_{1}$ for some $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$, and let $\Phi(j(z), j(g z))=0$ for some modular polynomial Φ. Differentiating with respect to z we get

$$
\frac{\partial \Phi}{\partial Y_{1}}(j(z), j(g z)) \cdot j^{\prime}(z)+\frac{\partial \Phi}{\partial Y_{2}}(j(z), j(g z)) \cdot j^{\prime}(g z) \cdot \frac{a d-b c}{(c z+d)^{2}}=0
$$

Thus, $\langle U\rangle$ satisfies the following equation:

$$
\frac{\partial \Phi}{\partial Y_{1}}\left(y_{1}, y_{2}\right) \cdot y_{1}^{\prime}+\frac{\partial \Phi}{\partial Y_{2}}\left(y_{1}, y_{2}\right) \cdot y_{2}^{\prime} \cdot \frac{a d-b c}{\left(c x_{1}+d\right)^{2}}=0 .
$$

Defining $\langle U\rangle$ algebraically

The coordinates of $\mathbb{C}^{4 n}$ are denoted by $\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right)$.
Assume U has no constant coordinates. Let the first two coordinates of U be related, i.e. $x_{2}=g x_{1}$ for some $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$, and let $\Phi(j(z), j(g z))=0$ for some modular polynomial Φ. Differentiating with respect to z we get

$$
\frac{\partial \Phi}{\partial Y_{1}}(j(z), j(g z)) \cdot j^{\prime}(z)+\frac{\partial \Phi}{\partial Y_{2}}(j(z), j(g z)) \cdot j^{\prime}(g z) \cdot \frac{a d-b c}{(c z+d)^{2}}=0
$$

Thus, $\langle U\rangle$ satisfies the following equation:

$$
\frac{\partial \Phi}{\partial Y_{1}}\left(y_{1}, y_{2}\right) \cdot y_{1}^{\prime}+\frac{\partial \Phi}{\partial Y_{2}}\left(y_{1}, y_{2}\right) \cdot y_{2}^{\prime} \cdot \frac{a d-b c}{\left(c x_{1}+d\right)^{2}}=0
$$

Differentiating once more we will get another equation between $\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{1}^{\prime}, y_{2}^{\prime}, y_{1}^{\prime \prime}, y_{2}^{\prime \prime}\right)$, and we will have four equations defining the projection of $\langle U\rangle$ to the first two coordinates.

Defining $\langle U\rangle$ algebraically

In general, we have a partition of $\{1, \ldots, n\}$ where two indices are in the same partitand if and only if the corresponding coordinates are related on U. We call the projection of $\langle U\rangle$ to a partitand a block. Then each block is defined by equations of the form described above and has dimension 4 , and $\langle U\rangle$ is the product of its blocks.

Defining $\langle U\rangle$ algebraically

In general, we have a partition of $\{1, \ldots, n\}$ where two indices are in the same partitand if and only if the corresponding coordinates are related on U. We call the projection of $\langle U\rangle$ to a partitand a block. Then each block is defined by equations of the form described above and has dimension 4 , and $\langle U\rangle$ is the product of its blocks.

When U has a constant coordinate (whose value must be a quadratic irrational), then we also get blocks of dimension 1 or 0 .

Defining $\langle U\rangle$ algebraically

In general, we have a partition of $\{1, \ldots, n\}$ where two indices are in the same partitand if and only if the corresponding coordinates are related on U. We call the projection of $\langle U\rangle$ to a partitand a block. Then each block is defined by equations of the form described above and has dimension 4, and $\langle U\rangle$ is the product of its blocks.

When U has a constant coordinate (whose value must be a quadratic irrational), then we also get blocks of dimension 1 or 0 .

There is a dual Existential Closedness statement for MSCD with special points, but it is equivalent to the other MECD statement.

Modular Zilber-Pink

Definition

- A j-special variety in \mathbb{C}^{n} is an irreducible component of a variety defined by some modular equations $\Phi_{N}\left(y_{k}, y_{l}\right)=0$.
- Let $V \subseteq \mathbb{C}^{n}$ be a variety. A j-atypical subvariety of V is an atypical component W of an intersection $V \cap T$ where T is j-special. Atypical means $\operatorname{dim} W>\operatorname{dim} V+\operatorname{dim} T-n$.

Modular Zilber-Pink

Definition

- A j-special variety in \mathbb{C}^{n} is an irreducible component of a variety defined by some modular equations $\Phi_{N}\left(y_{k}, y_{l}\right)=0$.
- Let $V \subseteq \mathbb{C}^{n}$ be a variety. A j-atypical subvariety of V is an atypical component W of an intersection $V \cap T$ where T is j-special. Atypical means $\operatorname{dim} W>\operatorname{dim} V+\operatorname{dim} T-n$.

Conjecture (Modular Zilber-Pink, MZP)

Let $V \subseteq \mathbb{C}^{n}$ be an algebraic variety. Let also $\operatorname{Atyp}_{j}(V)$ be the union of all j-atypical subvarieties of V.
(1) There is a finite collection Σ of proper j-special subvarieties of \mathbb{C}^{n} such that every j-atypical subvariety of V is contained in some $T \in \Sigma$.
(2) V contains only finitely many maximal j-atypical subvarieties.
(3) $\operatorname{Atyp}_{j}(V)$ is contained in a finite union of proper j-special subvarieties of \mathbb{C}^{n}.
(4) $\operatorname{Atyp}_{j}(V)$ is a Zariski closed subset of V.

Special varieties for J

Definition

- For a $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special variety U we denote by $\langle\langle U\rangle\rangle$ the Zariski closure of $J(U)$ over $\mathbb{Q}^{\text {alg }}$.
- A J-special subvariety of $\mathbb{C}^{3 n}$ is a set of the form $S=\langle\langle U\rangle\rangle$ where U is a $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special subvariety of \mathbb{H}^{n}.

Special varieties for J

Definition

- For a $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special variety U we denote by $\langle\langle U\rangle\rangle$ the Zariski closure of $J(U)$ over $\mathbb{Q}^{\text {alg }}$.
- A J-special subvariety of $\mathbb{C}^{3 n}$ is a set of the form $S=\langle\langle U\rangle\rangle$ where U is a $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special subvariety of \mathbb{H}^{n}.
- J-special varieties are irreducible.
- j-special varieties are bi-algebraic for the j-function, that is, they are the images under j of algebraic varieties (namely, $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special varieties). J-special varieties are not bi-algebraic for J, but they still capture the algebraic properties of the function J .
- The equations defining a J-special variety can be worked out as above since $\langle\langle U\rangle\rangle$ is a projection of $\langle U\rangle$. In particular, a variety $\langle\langle U\rangle\rangle$ is the product of its blocks each of which has dimension $0,1,3$ or 4 . Dimensions 0 and 1 correspond to constant coordinates. A block has dimension 3 if all the $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-matrices linking its x-coordinates are upper triangular, and dimension 4 otherwise.

Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{3 n}$ we let the J-atypical set of V, denoted $\operatorname{Atyp}_{J}(V)$, be the union of all atypical components of intersections $V \cap T$ in $\mathbb{C}^{3 n}$ where $T \subseteq \mathbb{C}^{3 n}$ is a J-special variety.

Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{3 n}$ we let the J-atypical set of V, denoted $\operatorname{Atyp}_{J}(V)$, be the union of all atypical components of intersections $V \cap T$ in $\mathbb{C}^{3 n}$ where $T \subseteq \mathbb{C}^{3 n}$ is a J-special variety.

Conjecture (Modular Zilber-Pink with Derivatives, MZPD)

For every algebraic variety $V \subseteq \mathbb{C}^{3 n}$ there is a finite collection Σ of proper $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special subvarieties of \mathbb{H}^{n} such that

$$
\operatorname{Atyp}_{J}(V) \cap J\left(\mathbb{H}^{n}\right) \subseteq \bigcup_{\overline{\mathcal{U} \in \mathrm{SL}_{2}(\mathbb{Z})^{n}}}\langle\langle\bar{\gamma} U\rangle\rangle .
$$

MZPD for Froad varieties

Definition

For a variety $V \subseteq \mathbb{C}^{3 n}$ we let the froadly J-atypical set of V, denoted $\operatorname{FAtyp}_{J}(V)$, be the union of all froad and atypical components of intersections $V \cap T$ in $\mathbb{C}^{3 n}$ where $T \subseteq \mathbb{C}^{3 n}$ is a J-special variety.

MZPD for Froad varieties

Definition

For a variety $V \subseteq \mathbb{C}^{3 n}$ we let the froadly J-atypical set of V, denoted FAtyp $_{J}(V)$, be the union of all froad and atypical components of intersections $V \cap T$ in $\mathbb{C}^{3 n}$ where $T \subseteq \mathbb{C}^{3 n}$ is a J-special variety.

Conjecture (Modular Zilber-Pink with Derivatives for Froad varieties, MZPDF)

For every algebraic variety $V \subseteq \mathbb{C}^{3 n}$ there is a finite collection Σ of proper $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special subvarieties of \mathbb{H}^{n} such that

$$
\operatorname{FAtyp}_{J}(V) \subseteq \bigcup_{\substack{U \in \Sigma \\ \bar{\gamma} \in \mathrm{SL}_{\mathbf{2}}(\mathbb{Z})^{n}}}\langle\langle\bar{\gamma} U\rangle\rangle
$$

Connection between MECD and MZPD

Proposition

(i) Assume MECDI. Then MZPD implies MZPDF.
(ii) Assume MSCDI. Then MZPDF implies MZPD.

MSCDI and MECDI are MSCD and MECD for the image (rather than the graph) of J.

Connection between MECD and MZPD

Proposition

(i) Assume MECDI. Then MZPD implies MZPDF.
(ii) Assume MSCDI. Then MZPDF implies MZPD.

MSCDI and MECDI are MSCD and MECD for the image (rather than the graph) of J.

Conjecture (MSCDI)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be arbitrary and let $U \subseteq \mathbb{H}^{n}$ be the $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-special closure of $\left(z_{1}, \ldots, z_{n}\right)$. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(J\left(z_{1}\right), \ldots, J\left(z_{n}\right)\right) \geq \operatorname{dim}\langle\langle U\rangle\rangle-\operatorname{dim} U$.

Conjecture (MECDI)

Let $V \subseteq \mathbb{C}^{3 n}$ be an irreducible froad variety. Then $V \cap \operatorname{Im}(J) \neq \emptyset$.

Differential/functional versions of MSCD and MECD

Let $\left(F ;+, \cdot, D_{1}, \ldots, D_{m}\right)$ be a differential field with an algebraically closed constant field $C=\bigcap_{k=1}^{m}$ ker D_{k}.

Theorem (Ax-Schanuel with Derivatives)

Let $\left(F ;+, \cdot, D_{1}, \ldots, D_{m}\right)$ be a differential field with commuting derivations and with field of constants C. Let also $\left(z_{i}, j_{i}, j_{i}^{\prime}, j_{i}^{\prime \prime}\right) \in \mathrm{D}_{\bar{J}}^{\times}(F), i=1, \ldots, n$. If the j_{i} 's are pairwise modularly independent then $\operatorname{td}_{C} C\left(\bar{z}, \bar{j}, j^{\prime}, \bar{j}^{\prime \prime}\right) \geq 3 n+\operatorname{rk}\left(D_{k} z_{i}\right)_{i, k}$.

Differential/functional versions of MSCD and MECD

Let $\left(F ;+, \cdot, D_{1}, \ldots, D_{m}\right)$ be a differential field with an algebraically closed constant field $C=\bigcap_{k=1}^{m}$ ker D_{k}.

Theorem (Ax-Schanuel with Derivatives)

Let $\left(F ;+, \cdot, D_{1}, \ldots, D_{m}\right)$ be a differential field with commuting derivations and with field of constants C. Let also $\left(z_{i}, j_{i}, j_{i}^{\prime}, j_{i}^{\prime \prime}\right) \in \operatorname{D} \Gamma_{\jmath}^{\times}(F), i=1, \ldots, n$. If the j_{i} 's are pairwise modularly independent then $\operatorname{td}_{C} C\left(\bar{z}, \bar{j}, \bar{j}^{\prime}, \bar{j}^{\prime \prime}\right) \geq 3 n+\operatorname{rk}\left(D_{k} z_{i}\right)_{i, k}$.

Theorem (Differential MECD)

Let F be a differential field, and $V \subseteq F^{4 n}$ be a J-broad variety. Then there is a differential field extension $K \supseteq F$ such that $V(K) \cap \mathrm{D} \Gamma_{J}(K) \neq \emptyset$. In particular, if F is differentially closed then $V(F) \cap \mathrm{D} \Gamma_{j}(F) \neq \emptyset$.

Differential/functional versions of MZPD

Theorem (Functional MZPD; FMZPD)

Let $(K ;+, \cdot, D)$ be a differential field with an algebraically closed field of constants C. Given an algebraic variety $V \subseteq C^{3 n}$, there is a finite collection Σ of proper j-special subvarieties of C^{n} such that

$$
\operatorname{Atyp}_{\mathrm{D}_{J}}(V)(K) \cap \mathrm{D} \operatorname{Im}_{\jmath}^{\times}(K) \subseteq \bigcup_{S \sim \Sigma} S .
$$

Differential/functional versions of MZPD

Theorem (Functional MZPD; FMZPD)

Let $(K ;+, \cdot, D)$ be a differential field with an algebraically closed field of constants C. Given an algebraic variety $V \subseteq C^{3 n}$, there is a finite collection Σ of proper j-special subvarieties of C^{n} such that

$$
\operatorname{Atyp}_{\mathrm{D}_{\lrcorner}}(V)(K) \cap \mathrm{D} \operatorname{Im}_{\jmath}^{\times}(K) \subseteq \bigcup_{S \sim \Sigma} S .
$$

Theorem (Functional MZPDF; FMZPDF)

Let C be an algebraically closed field of characteristic zero. Given an algebraic variety $V \subseteq C^{3 n}$, there is a finite collection Σ of proper j-special subvarieties of C^{n} such that

$$
\operatorname{SFAtyp}_{D_{\jmath}}(V)(C) \subseteq \bigcup_{S \sim \Sigma} S
$$

Differential/functional versions of MZPD

Theorem (Functional MZPD; FMZPD)

Let $(K ;+, \cdot, D)$ be a differential field with an algebraically closed field of constants C. Given an algebraic variety $V \subseteq C^{3 n}$, there is a finite collection Σ of proper j-special subvarieties of C^{n} such that

$$
\operatorname{Atyp}_{\mathrm{D}_{\lrcorner}}(V)(K) \cap \mathrm{D} \operatorname{Im}_{\jmath}^{\times}(K) \subseteq \bigcup_{S \sim \Sigma} S .
$$

Theorem (Functional MZPDF; FMZPDF)

Let C be an algebraically closed field of characteristic zero. Given an algebraic variety $V \subseteq C^{3 n}$, there is a finite collection Σ of proper j-special subvarieties of C^{n} such that

$$
\operatorname{SFAtyp}_{\mathrm{D}_{\jmath}}(V)(C) \subseteq \bigcup_{S \sim \Sigma} S
$$

These two are equivalent due to Differential MECDI. In fact, the proof also uses Differential MECDI.

