Existential Closedness and Zilber-Pink for j, j', j''

Vahagn Aslanyan

University of Leeds

LYMoTS

27 January 2023

• • • • • • • • • • • •

Why are they important?

Image: A math a math

Why are they important?

• General model-theoretic context.

• • • • • • • • • • •

Why are they important?

- General model-theoretic context.
- Schanuel is a special case of the generalised period conjecture.

Image: A math a math

Why are they important?

- General model-theoretic context.
- Schanuel is a special case of the generalised period conjecture.
- In the differential setting it is natural and often necessary to include derivatives.

Image: A math a math

Why are they important?

- General model-theoretic context.
- Schanuel is a special case of the generalised period conjecture.
- In the differential setting it is natural and often necessary to include derivatives.
- Many approaches to these conjectures (even without derivatives) involve techniques where we have to deal with derivatives.

• □ ▶ • □ ▶ • □ ▶ •

• Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.

< ロ > < 回 > < 回 > < 回 > < 回</p>

- Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = rac{az+b}{cz+d}.$$

- Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = rac{az+b}{cz+d}.$$

• Let $j : \mathbb{H} \to \mathbb{C}$ be the modular *j*-function.

イロト イヨト イヨト イヨ

- Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = rac{az+b}{cz+d}.$$

- Let $j : \mathbb{H} \to \mathbb{C}$ be the modular *j*-function.
- *j* is holomorphic on \mathbb{H} and is invariant under the action of $SL_2(\mathbb{Z})$, i.e. $j(\gamma z) = j(z)$ for all $\gamma \in SL_2(\mathbb{Z})$.

<ロト < 回ト < 回ト < 回ト < 回ト</p>

• There is a countable collection of irreducible polynomials $\Phi_N \in \mathbb{Z}[X, Y]$ $(N \ge 1)$, called *modular polynomials*, such that for any $z_1, z_2 \in \mathbb{H}$

 $\Phi_N(j(z_1), j(z_2)) = 0$ for some N iff $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$.

• □ ▶ • □ ▶ • □ ▶ •

• There is a countable collection of irreducible polynomials $\Phi_N \in \mathbb{Z}[X, Y]$ $(N \ge 1)$, called *modular polynomials*, such that for any $z_1, z_2 \in \mathbb{H}$

 $\Phi_N(j(z_1), j(z_2)) = 0$ for some N iff $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$.

• $\Phi_1(X, Y) = X - Y$ and all the other modular polynomials are symmetric.

Modular Schanuel and Existential Closedness

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_1, \ldots, z_n \in \mathbb{H}$ be non-quadratic numbers with distinct $GL_2^+(\mathbb{Q})$ -orbits. Then $td_{\mathbb{Q}} \mathbb{Q}(z_1, \ldots, z_n, j(z_1), \ldots, j(z_n)) \ge n$.

Image: A math a math

Modular Schanuel and Existential Closedness

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_1, \ldots, z_n \in \mathbb{H}$ be non-quadratic numbers with distinct $GL_2^+(\mathbb{Q})$ -orbits. Then $td_{\mathbb{Q}} \mathbb{Q}(z_1, \ldots, z_n, j(z_1), \ldots, j(z_n)) \ge n$.

By abuse of notation we will let j denote all Cartesian powers of itself. Similarly we let $\Gamma_j := \{(\bar{z}, j(\bar{z})) : \bar{z} \in \mathbb{H}^n\} \subseteq \mathbb{C}^{2n}$ be the graph of j in $\mathbb{H}^n \times \mathbb{C}^n$ for any n.

Modular Schanuel and Existential Closedness

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_1, \ldots, z_n \in \mathbb{H}$ be non-quadratic numbers with distinct $GL_2^+(\mathbb{Q})$ -orbits. Then $td_{\mathbb{Q}} \mathbb{Q}(z_1, \ldots, z_n, j(z_1), \ldots, j(z_n)) \ge n$.

By abuse of notation we will let j denote all Cartesian powers of itself. Similarly we let $\Gamma_j := \{(\bar{z}, j(\bar{z})) : \bar{z} \in \mathbb{H}^n\} \subseteq \mathbb{C}^{2n}$ be the graph of j in $\mathbb{H}^n \times \mathbb{C}^n$ for any n.

Conjecture (Modular Existential Closedness)

Let $V \subseteq \mathbb{H}^n \times \mathbb{C}^n$ be an irreducible **froad** (**free** and **broad**) variety defined over \mathbb{C} . Then $V \cap \Gamma_j \neq \emptyset$.

This is an analogue of Zilber's Exponential Closedness conjecture.

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Froad varieties

We will use the following notation.

- $(n) := (1, \ldots, n)$, and $\overline{k} \subseteq (n)$ means that $\overline{k} = (k_1, \ldots, k_l)$ for some $1 \le k_1 < \ldots < k_l \le n$.
- The coordinates of \mathbb{C}^{2n} will be denoted by $(x_1, \ldots, x_n, y_1, \ldots, y_n)$.
- For $\bar{k} = (k_1, \dots, k_l) \subseteq (n)$ define

$$\operatorname{pr}_{\bar{k}} : \mathbb{C}^{n} \to \mathbb{C}^{l} : (x_{1}, \dots, x_{n}) \mapsto (x_{k_{1}}, \dots, x_{k_{l}}),$$
$$\operatorname{pr}_{\bar{k}} : \mathbb{C}^{2n} \to \mathbb{C}^{2l} : (\bar{x}, \bar{y}) \mapsto (\operatorname{pr}_{\bar{k}}(\bar{x}), \operatorname{pr}_{\bar{k}}(\bar{y})).$$

Froad varieties

We will use the following notation.

- $(n) := (1, \ldots, n)$, and $\overline{k} \subseteq (n)$ means that $\overline{k} = (k_1, \ldots, k_l)$ for some $1 \le k_1 < \ldots < k_l \le n$.
- The coordinates of \mathbb{C}^{2n} will be denoted by $(x_1, \ldots, x_n, y_1, \ldots, y_n)$.
- For $\bar{k} = (k_1, \dots, k_l) \subseteq (n)$ define

$$\mathsf{pr}_{\bar{k}} : \mathbb{C}^n \to \mathbb{C}^I : (x_1, \dots, x_n) \mapsto (x_{k_1}, \dots, x_{k_l}),$$
$$\mathsf{pr}_{\bar{k}} : \mathbb{C}^{2n} \to \mathbb{C}^{2I} : (\bar{x}, \bar{y}) \mapsto (\mathsf{pr}_{\bar{k}}(\bar{x}), \mathsf{pr}_{\bar{k}}(\bar{y})).$$

Definition

Let $V \subseteq \mathbb{C}^{2n}$ be an algebraic variety.

- V is **broad** if for any $\overline{k} \subseteq (n)$ of length I we have dim $\operatorname{pr}_{\overline{k}} V \ge I$.
- V is *free* if no coordinate is constant on V, no relation of the form
 Φ_N(y_i, y_k) = 0 holds on V, and no relation of the form x_k = gx_i holds on V where g ∈ GL₂(ℚ).
- V is **froad** if it is free and broad.

Let $J: \mathbb{H} \to \mathbb{C}^3$ be given by $J: z \mapsto (j(z), j'(z), j''(z)).$

Let $J : \mathbb{H} \to \mathbb{C}^3$ be given by $J : z \mapsto (j(z), j'(z), j''(z))$. We extend J to \mathbb{H}^n by defining $J : \overline{z} \mapsto (j(\overline{z}), j'(\overline{z}), j''(\overline{z}))$ where $j^{(k)}(\overline{z}) = (j^{(k)}(z_1), \dots, j^{(k)}(z_n))$ for k = 0, 1, 2.

Let $J : \mathbb{H} \to \mathbb{C}^3$ be given by $J : z \mapsto (j(z), j'(z), j''(z))$. We extend J to \mathbb{H}^n by defining $J : \overline{z} \mapsto (j(\overline{z}), j'(\overline{z}), j''(\overline{z}))$ where $j^{(k)}(\overline{z}) = (j^{(k)}(z_1), \dots, j^{(k)}(z_n))$ for k = 0, 1, 2. Let $\Gamma_J \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of J for any n.

Let $J : \mathbb{H} \to \mathbb{C}^3$ be given by $J : z \mapsto (j(z), j'(z), j''(z))$. We extend J to \mathbb{H}^n by defining $J : \bar{z} \mapsto (j(\bar{z}), j'(\bar{z}), j''(\bar{z}))$ where $j^{(k)}(\bar{z}) = (j^{(k)}(z_1), \dots, j^{(k)}(z_n))$ for k = 0, 1, 2. Let $\Gamma_J \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of J for any n. We consider only the first two derivatives of j, for the higher derivatives are algebraic over those.

Let $J : \mathbb{H} \to \mathbb{C}^3$ be given by $J : z \mapsto (j(z), j'(z), j''(z))$. We extend J to \mathbb{H}^n by defining $J : \overline{z} \mapsto (j(\overline{z}), j'(\overline{z}), j''(\overline{z}))$ where $j^{(k)}(\overline{z}) = (j^{(k)}(z_1), \dots, j^{(k)}(z_n))$ for k = 0, 1, 2. Let $\Gamma_J \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of J for any n. We consider only the first two derivatives of j, for the higher derivatives are algebraic over those.

Conjecture (Modular Schanuel Conjecture with Derivatives)

Let $z_1, \ldots, z_n \in \mathbb{H}$ be non-quadratic numbers with distinct $GL_2^+(\mathbb{Q})$ -orbits. Then $td_{\mathbb{Q}}\mathbb{Q}(\bar{z}, J(\bar{z})) \geq 3n$.

(日) (同) (日) (日) (日)

Let $J : \mathbb{H} \to \mathbb{C}^3$ be given by $J : z \mapsto (j(z), j'(z), j''(z))$. We extend J to \mathbb{H}^n by defining $J : \overline{z} \mapsto (j(\overline{z}), j'(\overline{z}), j''(\overline{z}))$ where $j^{(k)}(\overline{z}) = (j^{(k)}(z_1), \dots, j^{(k)}(z_n))$ for k = 0, 1, 2. Let $\Gamma_J \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of J for any n. We consider only the first two derivatives of j, for the higher derivatives are algebraic over those.

Conjecture (Modular Schanuel Conjecture with Derivatives)

Let $z_1, \ldots, z_n \in \mathbb{H}$ be non-quadratic numbers with distinct $GL_2^+(\mathbb{Q})$ -orbits. Then $td_{\mathbb{Q}}\mathbb{Q}(\bar{z}, J(\bar{z})) \geq 3n$.

Conjecture (Modular Existential Closedness with Derivatives)

Let $V \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be an irreducible **froad** variety defined over \mathbb{C} . Then $V \cap \Gamma_J \neq \emptyset$.

Froad varieties

- The coordinates of \mathbb{C}^{4n} will be denoted by $(\bar{x}, \bar{y}, \bar{y}', \bar{y}'')$.
- For a tuple $\bar{k} = (k_1, \dots, k_l) \subseteq (n)$ define a map

 $\mathsf{pr}_{\bar{k}}: \mathbb{C}^{4n} \to \mathbb{C}^{4l}: (\bar{x}, \bar{y}, \bar{y}', \bar{y}'') \mapsto (\mathsf{pr}_{\bar{k}}(\bar{x}), \mathsf{pr}_{\bar{k}}(\bar{y}), \mathsf{pr}_{\bar{k}}(\bar{y}'), \mathsf{pr}_{\bar{k}}(\bar{y}'')).$

A D F A P F A P F A

Froad varieties

- The coordinates of \mathbb{C}^{4n} will be denoted by $(\bar{x}, \bar{y}, \bar{y}', \bar{y}'')$.
- For a tuple $ar{k} = (k_1, \dots, k_l) \subseteq (n)$ define a map

 $\mathsf{pr}_{\bar{k}}: \mathbb{C}^{4n} \to \mathbb{C}^{4l}: (\bar{x}, \bar{y}, \bar{y}', \bar{y}'') \mapsto (\mathsf{pr}_{\bar{k}}(\bar{x}), \mathsf{pr}_{\bar{k}}(\bar{y}), \mathsf{pr}_{\bar{k}}(\bar{y}'), \mathsf{pr}_{\bar{k}}(\bar{y}'')).$

Definition

- An algebraic variety V ⊆ C⁴ⁿ is *broad* if for any k̄ ⊆ (n) of length I we have dim pr_{k̄} V ≥ 3I.
- $V \subseteq \mathbb{C}^{4n}$ is **free** if its projection to the first 2n coordinates is free.
- V is **froad** if it is free and broad.

• □ ▶ • □ ▶ • □ ▶ •

MSCD with special points

Definition

- An irreducible subvariety $U \subseteq \mathbb{H}^n$ is called $\operatorname{GL}_2^+(\mathbb{Q})$ -**special** if it is defined by some equations of the form $z_i = g_{i,k}z_k$, $i \neq k$, with $g_{i,k} \in \operatorname{GL}_2^+(\mathbb{Q})$, and some equations of the form $z_i = \tau_i$ where $\tau_i \in \mathbb{H}$ is a quadratic number.
- For a GL⁺₂(Q)-special variety U we denote by ⟨U⟩ the Zariski closure of the graph of the restriction J|_U (i.e. the set {(z̄, J(z̄)) : z̄ ∈ U}) over Q^{alg}.
- The $GL_2^+(\mathbb{Q})$ -special closure of an irreducible variety $W \subseteq \mathbb{H}^n$ is the smallest $GL_2^+(\mathbb{Q})$ -special variety containing W.

MSCD with special points

Definition

- An irreducible subvariety $U \subseteq \mathbb{H}^n$ is called $\operatorname{GL}_2^+(\mathbb{Q})$ -**special** if it is defined by some equations of the form $z_i = g_{i,k}z_k$, $i \neq k$, with $g_{i,k} \in \operatorname{GL}_2^+(\mathbb{Q})$, and some equations of the form $z_i = \tau_i$ where $\tau_i \in \mathbb{H}$ is a quadratic number.
- For a GL⁺₂(Q)-special variety U we denote by ⟨U⟩ the Zariski closure of the graph of the restriction J|_U (i.e. the set {(z̄, J(z̄)) : z̄ ∈ U}) over Q^{alg}.
- The $GL_2^+(\mathbb{Q})$ -special closure of an irreducible variety $W \subseteq \mathbb{H}^n$ is the smallest $GL_2^+(\mathbb{Q})$ -special variety containing W.

Conjecture (MSCD with Special Points)

Let $z_1, \ldots, z_n \in \mathbb{H}$ be arbitrary and let $U \subseteq \mathbb{H}^n$ be the $GL_2^+(\mathbb{Q})$ -special closure of (z_1, \ldots, z_n) . Then $td_{\mathbb{Q}} \mathbb{Q}(z_1, \ldots, z_n, J(z_1), \ldots, J(z_n)) \ge \dim \langle U \rangle - \dim U$.

イロン イロン イヨン イヨン

The coordinates of \mathbb{C}^{4n} are denoted by $(\bar{x}, \bar{y}, \bar{y}', \bar{y}'')$. Assume U has no constant coordinates. Let the first two coordinates of U be related, i.e. $x_2 = gx_1$ for some $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{Q})$, and let $\Phi(j(z), j(gz)) = 0$ for some modular polynomial Φ .

• □ ▶ • □ ▶ • □ ▶ •

The coordinates of \mathbb{C}^{4n} are denoted by $(\bar{x}, \bar{y}, \bar{y}', \bar{y}'')$. Assume U has no constant coordinates. Let the first two coordinates of U be related, i.e. $x_2 = gx_1$ for some $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{Q})$, and let $\Phi(j(z), j(gz)) = 0$ for some modular polynomial Φ . Differentiating with respect to z we get

$$\frac{\partial \Phi}{\partial Y_1}(j(z), j(gz)) \cdot j'(z) + \frac{\partial \Phi}{\partial Y_2}(j(z), j(gz)) \cdot j'(gz) \cdot \frac{ad - bc}{(cz + d)^2} = 0.$$
 (*)

The coordinates of \mathbb{C}^{4n} are denoted by $(\bar{x}, \bar{y}, \bar{y}', \bar{y}'')$. Assume U has no constant coordinates. Let the first two coordinates of U be related, i.e. $x_2 = gx_1$ for some $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{Q})$, and let $\Phi(j(z), j(gz)) = 0$ for some modular polynomial Φ . Differentiating with respect to z we get

$$\frac{\partial \Phi}{\partial Y_1}(j(z), j(gz)) \cdot j'(z) + \frac{\partial \Phi}{\partial Y_2}(j(z), j(gz)) \cdot j'(gz) \cdot \frac{ad - bc}{(cz + d)^2} = 0.$$
 (*)

Thus, $\langle U \rangle$ satisfies the following equation:

$$\frac{\partial \Phi}{\partial Y_1}(y_1, y_2) \cdot y_1' + \frac{\partial \Phi}{\partial Y_2}(y_1, y_2) \cdot y_2' \cdot \frac{ad - bc}{(cx_1 + d)^2} = 0. \tag{\dagger}$$

The coordinates of \mathbb{C}^{4n} are denoted by $(\bar{x}, \bar{y}, \bar{y}', \bar{y}'')$. Assume U has no constant coordinates. Let the first two coordinates of U be related, i.e. $x_2 = gx_1$ for some $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{Q})$, and let $\Phi(j(z), j(gz)) = 0$ for some modular polynomial Φ . Differentiating with respect to z we get

$$\frac{\partial \Phi}{\partial Y_1}(j(z), j(gz)) \cdot j'(z) + \frac{\partial \Phi}{\partial Y_2}(j(z), j(gz)) \cdot j'(gz) \cdot \frac{ad - bc}{(cz + d)^2} = 0.$$
 (*)

Thus, $\langle U \rangle$ satisfies the following equation:

$$\frac{\partial \Phi}{\partial Y_1}(y_1, y_2) \cdot y_1' + \frac{\partial \Phi}{\partial Y_2}(y_1, y_2) \cdot y_2' \cdot \frac{ad - bc}{(cx_1 + d)^2} = 0. \tag{\dagger}$$

Differentiating once more we will get another equation between $(x_1, x_2, y_1, y_2, y'_1, y'_2, y''_1, y''_2)$, and we will have four equations defining the projection of $\langle U \rangle$ to the first two coordinates.

イロト イヨト イヨト イヨト

In general, we have a partition of $\{1, \ldots, n\}$ where two indices are in the same partitand if and only if the corresponding coordinates are related on U. We call the projection of $\langle U \rangle$ to a partitand a *block*. Then each block is defined by equations of the form described above and has dimension 4, and $\langle U \rangle$ is the product of its blocks.

< □ > < 同 > < 回 > < Ξ > < Ξ

In general, we have a partition of $\{1, \ldots, n\}$ where two indices are in the same partitand if and only if the corresponding coordinates are related on U. We call the projection of $\langle U \rangle$ to a partitand a *block*. Then each block is defined by equations of the form described above and has dimension 4, and $\langle U \rangle$ is the product of its blocks.

When U has a constant coordinate (whose value must be a quadratic irrational), then we also get blocks of dimension 1 or 0.

< □ > < 同 > < 回 > < Ξ > < Ξ

In general, we have a partition of $\{1, \ldots, n\}$ where two indices are in the same partitand if and only if the corresponding coordinates are related on U. We call the projection of $\langle U \rangle$ to a partitand a *block*. Then each block is defined by equations of the form described above and has dimension 4, and $\langle U \rangle$ is the product of its blocks.

When U has a constant coordinate (whose value must be a quadratic irrational), then we also get blocks of dimension 1 or 0.

There is a dual Existential Closedness statement for MSCD with special points, but it is equivalent to the other MECD statement.

イロト イボト イヨト イヨト

Modular Zilber-Pink

Definition

- A *j*-**special** variety in \mathbb{C}^n is an irreducible component of a variety defined by some modular equations $\Phi_N(y_k, y_l) = 0$.
- Let $V \subseteq \mathbb{C}^n$ be a variety. A *j*-atypical subvariety of V is an atypical component W of an intersection $V \cap T$ where T is *j*-special. Atypical means dim $W > \dim V + \dim T n$.

• □ ▶ • □ ▶ • □ ▶ •

Modular Zilber-Pink

Definition

- A *j*-special variety in \mathbb{C}^n is an irreducible component of a variety defined by some modular equations $\Phi_N(y_k, y_l) = 0$.
- Let $V \subseteq \mathbb{C}^n$ be a variety. A *j*-atypical subvariety of V is an atypical component W of an intersection $V \cap T$ where T is *j*-special. Atypical means dim $W > \dim V + \dim T n$.

Conjecture (Modular Zilber-Pink, MZP)

Let $V \subseteq \mathbb{C}^n$ be an algebraic variety. Let also $\operatorname{Atyp}_j(V)$ be the union of all *j*-atypical subvarieties of V.

- (1) There is a finite collection Σ of proper *j*-special subvarieties of \mathbb{C}^n such that every *j*-atypical subvariety of *V* is contained in some $T \in \Sigma$.
- (2) V contains only finitely many maximal j-atypical subvarieties.
- (3) Atyp_j(V) is contained in a finite union of proper j-special subvarieties of \mathbb{C}^n .
- (4) $\operatorname{Atyp}_i(V)$ is a Zariski closed subset of V.

Special varieties for J

Definition

- For a GL₂⁺(ℚ)-special variety U we denote by ⟨⟨U⟩⟩ the Zariski closure of J(U) over ℚ^{alg}.
- A *J*-*special* subvariety of \mathbb{C}^{3n} is a set of the form $S = \langle \langle U \rangle \rangle$ where *U* is a $\mathrm{GL}_2^+(\mathbb{Q})$ -special subvariety of \mathbb{H}^n .

Special varieties for J

Definition

- For a GL₂⁺(ℚ)-special variety U we denote by ⟨⟨U⟩⟩ the Zariski closure of J(U) over ℚ^{alg}.
- A *J*-*special* subvariety of \mathbb{C}^{3n} is a set of the form $S = \langle \langle U \rangle \rangle$ where *U* is a $\mathrm{GL}_2^+(\mathbb{Q})$ -special subvariety of \mathbb{H}^n .
- J-special varieties are irreducible.
- j-special varieties are bi-algebraic for the j-function, that is, they are the images under j of algebraic varieties (namely, GL⁺₂(Q)-special varieties).
 J-special varieties are not bi-algebraic for J, but they still capture the algebraic properties of the function J.
- The equations defining a J-special variety can be worked out as above since \langle U \rangle is a projection of \langle U \rangle. In particular, a variety \langle U \rangle is the product of its blocks each of which has dimension 0, 1, 3 or 4. Dimensions 0 and 1 correspond to constant coordinates. A block has dimension 3 if all the GL¹₂(Q)-matrices linking its x-coordinates are upper triangular, and dimension 4 otherwise.

Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{3n}$ we let the *J*-**atypical set** of *V*, denoted $\operatorname{Atyp}_J(V)$, be the union of all atypical components of intersections $V \cap T$ in \mathbb{C}^{3n} where $T \subseteq \mathbb{C}^{3n}$ is a *J*-special variety.

Image: A math a math

Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{3n}$ we let the *J*-**atypical set** of *V*, denoted $\operatorname{Atyp}_J(V)$, be the union of all atypical components of intersections $V \cap T$ in \mathbb{C}^{3n} where $T \subseteq \mathbb{C}^{3n}$ is a *J*-special variety.

Conjecture (Modular Zilber-Pink with Derivatives, MZPD)

For every algebraic variety $V \subseteq \mathbb{C}^{3n}$ there is a finite collection Σ of proper $GL_2^+(\mathbb{Q})$ -special subvarieties of \mathbb{H}^n such that

$$\operatorname{Atyp}_{J}(V) \cap J(\mathbb{H}^{n}) \subseteq \bigcup_{\substack{U \in \Sigma \\ \bar{\gamma} \in \operatorname{SL}_{2}(\mathbb{Z})^{n}}} \langle \langle \bar{\gamma}U \rangle \rangle.$$

Image: A math the second se

MZPD for Froad varieties

Definition

For a variety $V \subseteq \mathbb{C}^{3n}$ we let the **froadly** *J*-**atypical set** of *V*, denoted $\operatorname{FAtyp}_J(V)$, be the union of all **froad** and atypical components of intersections $V \cap T$ in \mathbb{C}^{3n} where $T \subseteq \mathbb{C}^{3n}$ is a *J*-special variety.

(日) (同) (日) (日)

MZPD for Froad varieties

Definition

For a variety $V \subseteq \mathbb{C}^{3n}$ we let the **froadly** *J*-**atypical set** of *V*, denoted $\operatorname{FAtyp}_J(V)$, be the union of all **froad** and atypical components of intersections $V \cap T$ in \mathbb{C}^{3n} where $T \subseteq \mathbb{C}^{3n}$ is a *J*-special variety.

Conjecture (Modular Zilber-Pink with Derivatives for Froad varieties, MZPDF)

For every algebraic variety $V \subseteq \mathbb{C}^{3n}$ there is a finite collection Σ of proper $GL_2^+(\mathbb{Q})$ -special subvarieties of \mathbb{H}^n such that

$$\operatorname{FAtyp}_{J}(V) \subseteq \bigcup_{\substack{U \in \Sigma\\ \bar{\gamma} \in \operatorname{SL}_{2}(\mathbb{Z})^{n}}} \langle \langle \bar{\gamma} U \rangle \rangle.$$

< □ > < 同 > < 回 > < Ξ > < Ξ

Connection between MECD and MZPD

Proposition

- (i) Assume MECDI. Then MZPD implies MZPDF.
- (ii) Assume MSCDI. Then MZPDF implies MZPD.

MSCDI and MECDI are MSCD and MECD for the image (rather than the graph) of J.

Image: A math a math

Connection between MECD and MZPD

Proposition

- (i) Assume MECDI. Then MZPD implies MZPDF.
- (ii) Assume MSCDI. Then MZPDF implies MZPD.

MSCDI and MECDI are MSCD and MECD for the image (rather than the graph) of J.

Conjecture (MSCDI)

Let $z_1, \ldots, z_n \in \mathbb{H}$ be arbitrary and let $U \subseteq \mathbb{H}^n$ be the $GL_2^+(\mathbb{Q})$ -special closure of (z_1, \ldots, z_n) . Then $td_{\mathbb{Q}} \mathbb{Q}(J(z_1), \ldots, J(z_n)) \ge \dim \langle \langle U \rangle \rangle - \dim U$.

Conjecture (MECDI)

Let $V \subseteq \mathbb{C}^{3n}$ be an irreducible **froad** variety. Then $V \cap \text{Im}(J) \neq \emptyset$.

Differential/functional versions of MSCD and MECD

Let $(F; +, \cdot, D_1, \dots, D_m)$ be a differential field with an algebraically closed constant field $C = \bigcap_{k=1}^m \ker D_k$.

Theorem (Ax-Schanuel with Derivatives)

Let $(F; +, \cdot, D_1, \ldots, D_m)$ be a differential field with commuting derivations and with field of constants C. Let also $(z_i, j_i, j'_i, j''_i) \in D \Gamma_j^{\times}(F)$, $i = 1, \ldots, n$. If the j_i 's are pairwise modularly independent then $td_C C(\bar{z}, \bar{j}, \bar{j}', \bar{j}'') \ge 3n + rk(D_k z_i)_{i,k}$.

Differential/functional versions of MSCD and MECD

Let $(F; +, \cdot, D_1, \dots, D_m)$ be a differential field with an algebraically closed constant field $C = \bigcap_{k=1}^m \ker D_k$.

Theorem (Ax-Schanuel with Derivatives)

Let $(F; +, \cdot, D_1, \ldots, D_m)$ be a differential field with commuting derivations and with field of constants C. Let also $(z_i, j_i, j'_i, j''_i) \in D \Gamma_j^{\times}(F)$, $i = 1, \ldots, n$. If the j_i 's are pairwise modularly independent then $td_C C(\bar{z}, \bar{j}, \bar{j}', \bar{j}'') \ge 3n + rk(D_k z_i)_{i,k}$.

Theorem (Differential MECD)

Let F be a differential field, and $V \subseteq F^{4n}$ be a J-broad variety. Then there is a differential field extension $K \supseteq F$ such that $V(K) \cap D\Gamma_J(K) \neq \emptyset$. In particular, if F is differentially closed then $V(F) \cap D\Gamma_J(F) \neq \emptyset$.

(日) (同) (日) (日)

Theorem (Functional MZPD; FMZPD)

Let $(K; +, \cdot, D)$ be a differential field with an algebraically closed field of constants C. Given an algebraic variety $V \subseteq C^{3n}$, there is a finite collection Σ of proper *j*-special subvarieties of C^n such that

$$\operatorname{Atyp}_{\mathsf{D}_J}(V)(K) \cap \operatorname{\mathsf{D}}\operatorname{Im}_J^{ imes}(K) \subseteq \bigcup_{S \sim \Sigma} S.$$

Image: A matrix

Theorem (Functional MZPD; FMZPD)

Let $(K; +, \cdot, D)$ be a differential field with an algebraically closed field of constants C. Given an algebraic variety $V \subseteq C^{3n}$, there is a finite collection Σ of proper *j*-special subvarieties of C^n such that

$$\operatorname{Atyp}_{\mathsf{D}_J}(V)(K) \cap \mathsf{D}\operatorname{Im}_J^{\times}(K) \subseteq \bigcup_{S \sim \Sigma} S.$$

Theorem (Functional MZPDF; FMZPDF)

Let C be an algebraically closed field of characteristic zero. Given an algebraic variety $V \subseteq C^{3n}$, there is a finite collection Σ of proper j-special subvarieties of C^n such that

$$\operatorname{SFAtyp}_{\mathsf{D}_J}(V)(C) \subseteq \bigcup_{S \sim \Sigma} S.$$

Image: A math the second se

Theorem (Functional MZPD; FMZPD)

Let $(K; +, \cdot, D)$ be a differential field with an algebraically closed field of constants C. Given an algebraic variety $V \subseteq C^{3n}$, there is a finite collection Σ of proper *j*-special subvarieties of C^n such that

$$\operatorname{Atyp}_{\mathsf{D}_J}(V)(K) \cap \mathsf{D}\operatorname{Im}_J^{\times}(K) \subseteq \bigcup_{S \sim \Sigma} S.$$

Theorem (Functional MZPDF; FMZPDF)

Let C be an algebraically closed field of characteristic zero. Given an algebraic variety $V \subseteq C^{3n}$, there is a finite collection Σ of proper j-special subvarieties of C^n such that

$$\mathrm{SFAtyp}_{\mathsf{D}_J}(V)(C) \subseteq \bigcup_{S \sim \Sigma} S.$$

These two are equivalent due to Differential MECDI. In fact, the proof also uses Differential MECDI.