The Existential Closedness with Derivatives conjecture for the j-function

Vahagn Aslanyan
University of Leeds
Logic Colloquium
7 June 2023

Schanuel's conjecture and Exponential Closedness

Conjecture (Schanuel, 1960s)
For any \mathbb{Q}-linearly independent complex numbers z_{1}, \ldots, z_{n} we have

$$
\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right) \geq n
$$

Schanuel's conjecture and Exponential Closedness

Conjecture (Schanuel, 1960s)

For any \mathbb{Q}-linearly independent complex numbers z_{1}, \ldots, z_{n} we have

$$
\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right) \geq n .
$$

- Schanuel implies that certain systems of equations do not have solutions. E.g. for $n=2$ it implies that for any non-constant polynomial $p(X, Y) \in \mathbb{Q}[X, Y]$ the system $e^{z}=1, p(z, e)=0$ does not have solutions in \mathbb{C}.

Schanuel's conjecture and Exponential Closedness

Conjecture (Schanuel, 1960s)

For any \mathbb{Q}-linearly independent complex numbers z_{1}, \ldots, z_{n} we have

$$
\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right) \geq n .
$$

- Schanuel implies that certain systems of equations do not have solutions. E.g. for $n=2$ it implies that for any non-constant polynomial $p(X, Y) \in \mathbb{Q}[X, Y]$ the system $e^{z}=1, p(z, e)=0$ does not have solutions in \mathbb{C}.
- More generally, "overdetermined" systems do not have solutions.

Schanuel's conjecture and Exponential Closedness

Conjecture (Schanuel, 1960s)

For any \mathbb{Q}-linearly independent complex numbers z_{1}, \ldots, z_{n} we have

$$
\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right) \geq n .
$$

- Schanuel implies that certain systems of equations do not have solutions. E.g. for $n=2$ it implies that for any non-constant polynomial $p(X, Y) \in \mathbb{Q}[X, Y]$ the system $e^{z}=1, p(z, e)=0$ does not have solutions in \mathbb{C}.
- More generally, "overdetermined" systems do not have solutions.
- EC (Exponential Closedness) is a dual statement: if a system is not overdetermined, then it has solutions.

Schanuel's conjecture and Exponential Closedness

Conjecture (Schanuel, 1960s)

For any \mathbb{Q}-linearly independent complex numbers z_{1}, \ldots, z_{n} we have

$$
\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right) \geq n .
$$

- Schanuel implies that certain systems of equations do not have solutions. E.g. for $n=2$ it implies that for any non-constant polynomial $p(X, Y) \in \mathbb{Q}[X, Y]$ the system $e^{z}=1, p(z, e)=0$ does not have solutions in \mathbb{C}.
- More generally, "overdetermined" systems do not have solutions.
- EC (Exponential Closedness) is a dual statement: if a system is not overdetermined, then it has solutions.

Conjecture (Exponential Closedness, Zilber, early 2000s)

Let $V \subseteq \mathbb{C}^{n} \times\left(\mathbb{C}^{\times}\right)^{n}$ be a free and rotund variety. Then V contains a point of the form $\left(z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right)$.

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.
- $G L_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ we define

$$
g z=\frac{a z+b}{c z+d} .
$$

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.
- $G L_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ we define

$$
g z=\frac{a z+b}{c z+d}
$$

- Let $j: \mathbb{H} \rightarrow \mathbb{C}$ be the modular j-function.

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.
- $G L_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ we define

$$
g z=\frac{a z+b}{c z+d} .
$$

- Let $j: \mathbb{H} \rightarrow \mathbb{C}$ be the modular j-function.
- j is holomorphic on \mathbb{H} and is invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$, i.e. $j(\gamma z)=j(z)$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.

Modular polynomials

- There is a countable collection of irreducible polynomials $\Phi_{N} \in \mathbb{Z}[X, Y](N \geq 1)$, called modular polynomials, such that for any $z_{1}, z_{2} \in \mathbb{H}$

$$
\Phi_{N}\left(j\left(z_{1}\right), j\left(z_{2}\right)\right)=0 \text { for some } N \text { iff } z_{2}=g z_{1} \text { for some } g \in \mathrm{GL}_{2}^{+}(\mathbb{Q}) .
$$

Modular polynomials

- There is a countable collection of irreducible polynomials $\Phi_{N} \in \mathbb{Z}[X, Y](N \geq 1)$, called modular polynomials, such that for any $z_{1}, z_{2} \in \mathbb{H}$

$$
\Phi_{N}\left(j\left(z_{1}\right), j\left(z_{2}\right)\right)=0 \text { for some } N \text { iff } z_{2}=g z_{1} \text { for some } g \in \mathrm{GL}_{2}^{+}(\mathbb{Q}) .
$$

- $\Phi_{1}(X, Y)=X-Y$ and all the other modular polynomials are symmetric.

Modular Schanuel and Existential Closedness

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, j\left(z_{1}\right), \ldots, j\left(z_{n}\right)\right) \geq n$.

Modular Schanuel and Existential Closedness

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td} \mathbb{Q} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, j\left(z_{1}\right), \ldots, j\left(z_{n}\right)\right) \geq n$.

By abuse of notation we will let j denote all Cartesian powers of itself.

Modular Schanuel and Existential Closedness

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td} \mathbb{Q} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, j\left(z_{1}\right), \ldots, j\left(z_{n}\right)\right) \geq n$.

By abuse of notation we will let j denote all Cartesian powers of itself. Similarly we let $\Gamma_{j}:=\left\{(\bar{z}, j(\bar{z})): \bar{z} \in \mathbb{H}^{n}\right\} \subseteq \mathbb{C}^{2 n}$ be the graph of j in $\mathbb{H}^{n} \times \mathbb{C}^{n}$ for any n.

Modular Schanuel and Existential Closedness

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, j\left(z_{1}\right), \ldots, j\left(z_{n}\right)\right) \geq n$.

By abuse of notation we will let j denote all Cartesian powers of itself. Similarly we let $\Gamma_{j}:=\left\{(\bar{z}, j(\bar{z})): \bar{z} \in \mathbb{H}^{n}\right\} \subseteq \mathbb{C}^{2 n}$ be the graph of j in $\mathbb{H}^{n} \times \mathbb{C}^{n}$ for any n.

Conjecture (Modular Existential Closedness, A.-Kirby 2021)

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{n}$ be an irreducible froad (free and broad) variety defined over \mathbb{C}. Then $V \cap \Gamma_{j} \neq \emptyset$.

This is an analogue of Zilber's Exponential Closedness conjecture.

Froad varieties

The coordinates of $\mathbb{C}^{2 n}$ (and $\left.\mathbb{H}^{n} \times \mathbb{C}^{n}\right)$ are denoted by $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.

Froad varieties

The coordinates of $\mathbb{C}^{2 n}$ (and $\mathbb{H}^{n} \times \mathbb{C}^{n}$) are denoted by $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.

Definition

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{n}$ be an algebraic variety.

- V is broad if for any $1 \leq k_{1}<\ldots<k_{m} \leq n$ the projection of V to the coordinates $\left(x_{k_{1}}, \ldots, x_{k_{m}}, y_{k_{1}}, \ldots, y_{k_{m}}\right)$ is at least m.

Froad varieties

The coordinates of $\mathbb{C}^{2 n}$ (and $\mathbb{H}^{n} \times \mathbb{C}^{n}$) are denoted by $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.

Definition

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{n}$ be an algebraic variety.

- V is broad if for any $1 \leq k_{1}<\ldots<k_{m} \leq n$ the projection of V to the coordinates $\left(x_{k_{1}}, \ldots, x_{k_{m}}, y_{k_{1}}, \ldots, y_{k_{m}}\right)$ is at least m. In particular, $\operatorname{dim} V \geq n$.

Froad varieties

The coordinates of $\mathbb{C}^{2 n}$ (and $\mathbb{H}^{n} \times \mathbb{C}^{n}$) are denoted by $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.

Definition

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{n}$ be an algebraic variety.

- V is broad if for any $1 \leq k_{1}<\ldots<k_{m} \leq n$ the projection of V to the coordinates $\left(x_{k_{1}}, \ldots, x_{k_{m}}, y_{k_{1}}, \ldots, y_{k_{m}}\right)$ is at least m. In particular, $\operatorname{dim} V \geq n$.
- V is free if no coordinate is constant on V, no relation of the form $\Phi_{N}\left(y_{i}, y_{k}\right)=0$ holds on V, and no relation of the form $x_{k}=g x_{i}$ holds on V where $g \in \mathrm{GL}_{2}(\mathbb{Q})$.

Froad varieties

The coordinates of $\mathbb{C}^{2 n}$ (and $\left.\mathbb{H}^{n} \times \mathbb{C}^{n}\right)$ are denoted by $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$.

Definition

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{n}$ be an algebraic variety.

- V is broad if for any $1 \leq k_{1}<\ldots<k_{m} \leq n$ the projection of V to the coordinates $\left(x_{k_{1}}, \ldots, x_{k_{m}}, y_{k_{1}}, \ldots, y_{k_{m}}\right)$ is at least m. In particular, $\operatorname{dim} V \geq n$.
- V is free if no coordinate is constant on V, no relation of the form $\Phi_{N}\left(y_{i}, y_{k}\right)=0$ holds on V, and no relation of the form $x_{k}=g x_{i}$ holds on V where $g \in \mathrm{GL}_{2}(\mathbb{Q})$.
- V is froad if it is free and broad.

Exponential vs modular EC

There are two main differences between exponential and modular Existential Closedness.

- Exponential functions are defined on the whole complex plane while modular functions are defined on the upper half-plane. These spaces (\mathbb{C} and \mathbb{H}) are geometrically different which accounts for different approaches to EC in these two settings.

Exp vs j

Exponential vs modular EC

There are two main differences between exponential and modular Existential Closedness.

- Exponential functions are defined on the whole complex plane while modular functions are defined on the upper half-plane. These spaces (\mathbb{C} and \mathbb{H}) are geometrically different which accounts for different approaches to EC in these two settings.
- Modular functions satisfy third-order differential equations, so we can consider EC for these functions together with their first two derivatives. Exponential functions satisfy first-order differential equations so considering derivatives would not change anything.

Modular EC with Derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by $J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)$.

Modular EC with Derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by $J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)$.
Let $\Gamma_{J}:=\left\{(\bar{z}, J(\bar{z})): \bar{z} \in \mathbb{H}^{n}\right\} \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of J for any n.

Modular EC with Derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by $J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)$.
Let $\Gamma_{J}:=\left\{(\bar{z}, J(\bar{z})): \bar{z} \in \mathbb{H}^{n}\right\} \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of J for any n. We consider only the first two derivatives of j, for the higher derivatives are algebraic over those.

Modular EC with Derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by $J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)$.
Let $\Gamma_{J}:=\left\{(\bar{z}, J(\bar{z})): \bar{z} \in \mathbb{H}^{n}\right\} \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of J for any n. We consider only the first two derivatives of j, for the higher derivatives are algebraic over those.

Conjecture (Modular Schanuel Conjecture with Derivatives)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}(\bar{z}, J(\bar{z})) \geq 3 n$.

Modular EC with Derivatives

Let $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ be given by $J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)$.
Let $\Gamma_{J}:=\left\{(\bar{z}, J(\bar{z})): \bar{z} \in \mathbb{H}^{n}\right\} \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of J for any n.
We consider only the first two derivatives of j, for the higher derivatives are algebraic over those.

Conjecture (Modular Schanuel Conjecture with Derivatives)

Let $z_{1}, \ldots, z_{n} \in \mathbb{H}$ be non-quadratic numbers with distinct $\mathrm{GL}_{2}^{+}(\mathbb{Q})$-orbits. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}(\bar{z}, J(\bar{z})) \geq 3 n$.

Conjecture (Modular Existential Closedness with Derivatives, A.-Kirby 2021)

Let $V \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be an irreducible froad (free and broad) variety defined over \mathbb{C}. Then $V \cap \Gamma_{J} \neq \emptyset$.

Froad varieties

The coordinates of $\mathbb{C}^{4 n}$ will be denoted by $\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right)$.

Froad varieties

The coordinates of $\mathbb{C}^{4 n}$ will be denoted by ($\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}$).

Definition

- An algebraic variety $V \subseteq \mathbb{C}^{4 n}$ is broad if for any $1 \leq k_{1}<\ldots<k_{m} \leq n$ we have $\operatorname{dim} \operatorname{pr}_{\bar{k}} V \geq 3 m$.

Froad varieties

The coordinates of $\mathbb{C}^{4 n}$ will be denoted by ($\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}$).

Definition

- An algebraic variety $V \subseteq \mathbb{C}^{4 n}$ is broad if for any $1 \leq k_{1}<\ldots<k_{m} \leq n$ we have $\operatorname{dim~}_{\mathrm{pr}}^{\bar{k}}, ~ V \geq 3 m$. In particular, $\operatorname{dim} V \geq 3 n$.
- $V \subseteq \mathbb{C}^{4 n}$ is free if its projection to the first $2 n$ coordinates is free.
- V is froad if it is free and broad.

Why should we care?

Why is EC with Derivatives important?

Why should we care?

Why is EC with Derivatives important?

- General model-theoretic context.

Why should we care?

Why is EC with Derivatives important?

- General model-theoretic context.
- Schanuel (with derivatives) is a special case of the generalised period conjecture.

Why should we care?

Why is EC with Derivatives important?

- General model-theoretic context.
- Schanuel (with derivatives) is a special case of the generalised period conjecture.
- In the differential setting it is natural and often necessary to include derivatives.

Why should we care?

Why is EC with Derivatives important?

- General model-theoretic context.
- Schanuel (with derivatives) is a special case of the generalised period conjecture.
- In the differential setting it is natural and often necessary to include derivatives.
- Many approaches to these conjectures (even without derivatives) involve techniques where we have to deal with derivatives.

Why should we care?

Why is EC with Derivatives important?

- General model-theoretic context.
- Schanuel (with derivatives) is a special case of the generalised period conjecture.
- In the differential setting it is natural and often necessary to include derivatives.
- Many approaches to these conjectures (even without derivatives) involve techniques where we have to deal with derivatives.
- Derivatives of modular functions are modular forms of weight 2.

Partial results and analogues

$\mathrm{EC}=$ Existential Closedness (without derivatives) ECD $=$ Existential Closedness with Derivatives

Partial results and analogues

$\mathrm{EC}=$ Existential Closedness (without derivatives) ECD $=$ Existential Closedness with Derivatives

- Differential/functional analogue of ECD.

Partial results and analogues

$\mathrm{EC}=$ Existential Closedness (without derivatives)
ECD $=$ Existential Closedness with Derivatives

- Differential/functional analogue of ECD.
- EC assuming dominant projection to \mathbb{H}^{n} (Eterović-Herrero 2019).

Partial results and analogues

$\mathrm{EC}=$ Existential Closedness (without derivatives)
ECD $=$ Existential Closedness with Derivatives

- Differential/functional analogue of ECD.
- EC assuming dominant projection to \mathbb{H}^{n} (Eterović-Herrero 2019).
- ECD for $n=1$ (A.-Eterović-Mantova 2023).

Partial results and analogues

$\mathrm{EC}=$ Existential Closedness (without derivatives)
ECD $=$ Existential Closedness with Derivatives

- Differential/functional analogue of ECD.
- EC assuming dominant projection to \mathbb{H}^{n} (Eterović-Herrero 2019).
- ECD for $n=1$ (A.-Eterović-Mantova 2023).
- EC assuming $V=U \times W$ where U is defined by $\mathrm{GL}_{2}^{+}(\mathbb{R})$-relations (Gallinaro 2021).

Partial results and analogues

$\mathrm{EC}=$ Existential Closedness (without derivatives)
ECD $=$ Existential Closedness with Derivatives

- Differential/functional analogue of ECD.
- EC assuming dominant projection to \mathbb{H}^{n} (Eterović-Herrero 2019).
- ECD for $n=1$ (A.-Eterović-Mantova 2023).
- EC assuming $V=U \times W$ where U is defined by $\mathrm{GL}_{2}^{+}(\mathbb{R})$-relations (Gallinaro 2021).
- EC assuming $V=U \times W$ where U is defined by non-real $\mathrm{GL}_{2}^{+}(\mathbb{C})$-relations (A. 2021).

Partial results and analogues

$\mathrm{EC}=$ Existential Closedness (without derivatives) ECD $=$ Existential Closedness with Derivatives

- Differential/functional analogue of ECD.
- EC assuming dominant projection to \mathbb{H}^{n} (Eterović-Herrero 2019).
- ECD for $n=1$ (A.-Eterović-Mantova 2023).
- EC assuming $V=U \times W$ where U is defined by $\mathrm{GL}_{2}^{+}(\mathbb{R})$-relations (Gallinaro 2021).
- EC assuming $V=U \times W$ where U is defined by non-real $\mathrm{GL}_{2}^{+}(\mathbb{C})$-relations (A. 2021).
- EC for blurred j, i.e. when we replace the graph of j with the relation $\left\{(z, j(g z)): g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})\right\}$ (A.-Kirby 2021).

Partial results and analogues

$\mathrm{EC}=$ Existential Closedness (without derivatives) ECD $=$ Existential Closedness with Derivatives

- Differential/functional analogue of ECD.
- EC assuming dominant projection to \mathbb{H}^{n} (Eterović-Herrero 2019).
- ECD for $n=1$ (A.-Eterović-Mantova 2023).
- EC assuming $V=U \times W$ where U is defined by $\mathrm{GL}_{2}^{+}(\mathbb{R})$-relations (Gallinaro 2021).
- EC assuming $V=U \times W$ where U is defined by non-real $\mathrm{GL}_{2}^{+}(\mathbb{C})$-relations (A. 2021).
- EC for blurred j, i.e. when we replace the graph of j with the relation $\left\{(z, j(g z)): g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})\right\}$ (A.-Kirby 2021).
- ECD for J blurred by a dense subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ (A.-Kirby 2021).

Partial results and analogues

$\mathrm{EC}=$ Existential Closedness (without derivatives) ECD $=$ Existential Closedness with Derivatives

- Differential/functional analogue of ECD.
- EC assuming dominant projection to \mathbb{H}^{n} (Eterović-Herrero 2019).
- ECD for $n=1$ (A.-Eterović-Mantova 2023).
- EC assuming $V=U \times W$ where U is defined by $\mathrm{GL}_{2}^{+}(\mathbb{R})$-relations (Gallinaro 2021).
- EC assuming $V=U \times W$ where U is defined by non-real $\mathrm{GL}_{2}^{+}(\mathbb{C})$-relations (A. 2021).
- EC for blurred j, i.e. when we replace the graph of j with the relation $\left\{(z, j(g z)): g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})\right\}$ (A.-Kirby 2021).
- ECD for J blurred by a dense subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ (A.-Kirby 2021).

The exponential counterparts of some of these results are known too. Sometimes the proofs are similar but most of the time they are qualitatively different.

Partial results and analogues

$\mathrm{EC}=$ Existential Closedness (without derivatives) ECD $=$ Existential Closedness with Derivatives

- Differential/functional analogue of ECD.
- EC assuming dominant projection to \mathbb{H}^{n} (Eterović-Herrero 2019).
- ECD for $n=1$ (A.-Eterović-Mantova 2023).
- EC assuming $V=U \times W$ where U is defined by $\mathrm{GL}_{2}^{+}(\mathbb{R})$-relations (Gallinaro 2021).
- EC assuming $V=U \times W$ where U is defined by non-real $\mathrm{GL}_{2}^{+}(\mathbb{C})$-relations (A. 2021).
- EC for blurred j, i.e. when we replace the graph of j with the relation $\left\{(z, j(g z)): g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})\right\}$ (A.-Kirby 2021).
- ECD for J blurred by a dense subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ (A.-Kirby 2021).

The exponential counterparts of some of these results are known too. Sometimes the proofs are similar but most of the time they are qualitatively different.
Some ingredients in the proofs: complex analysis/geometry (Rouché, argument principle, open mapping), o-minimality (dimension theory), differential algebra (differential forms, Ax-Schanuel).

