Blurrings of the j-function

Vahagn Aslanyan

University of East Anglia

25 November 2020

Joint work with Jonathan Kirby

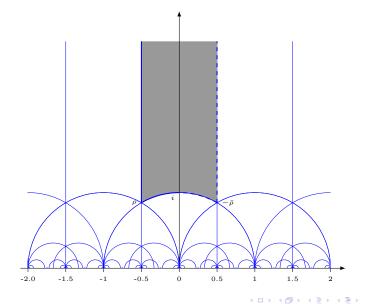
・ロト ・日ト ・ヨト

- Let $\mathbb{H} := \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = \frac{az+b}{cz+d}.$$

- Let $j : \mathbb{H} \to \mathbb{C}$ be the modular *j*-function.
- j is holomorphic on \mathbb{H} and is invariant under the action of $\mathrm{SL}_2(\mathbb{Z})$, i.e. $j(\gamma z) = j(z)$ for all $\gamma \in \mathrm{SL}_2(\mathbb{Z})$.
- By means of j the quotient SL₂(ℤ) \ 𝔄 is identified with ℂ (thus, j is a bijection from a fundamental domain of SL₂(ℤ) to ℂ).

Fundamental domain of $SL_2(\mathbb{Z})$



25 Nov 2020 3/24

• There is a countable collection of irreducible polynomials $\Phi_N \in \mathbb{Z}[X, Y] \ (N \ge 1)$, called *modular polynomials*, such that for any $z_1, z_2 \in \mathbb{H}$

 $\Phi_N(j(z_1), j(z_2)) = 0$ for some N iff $z_2 = gz_1$ for some $g \in \operatorname{GL}_2^+(\mathbb{Q})$.

• $\Phi_1(X,Y) = X - Y$ and all the other modular polynomials are symmetric.

Definition

A special subvariety of \mathbb{C}^n (with coordinates \bar{w}) is an irreducible component of a variety defined by modular equations, i.e. equations of the form $\Phi_N(w_k, w_l) = 0$ for some $1 \le k, l \le n$ where Φ_N is a modular polynomial.

The following is a modular analogue of Schanuel's conjecture.

Conjecture (Modular Schanuel Conjecture)

Let $z_1, \ldots, z_n \in \mathbb{H}$ be non-quadratic numbers with distinct $\operatorname{GL}_2^+(\mathbb{Q})$ -orbits. Then $\operatorname{td}_{\mathbb{Q}}\mathbb{Q}(z_1, \ldots, z_n, j(z_1), \ldots, j(z_n)) \geq n$.

By abuse of notation we will let j denote all Cartesian powers of itself. Similarly we let $\Gamma_j := \{(\bar{z}, j(\bar{z})) : \bar{z} \in \mathbb{H}^n\} \subseteq \mathbb{C}^{2n}$ be the graph of j in $\mathbb{H}^n \times \mathbb{C}^n$ for any n.

Conjecture (Existential Closedness for j)

Let $V \subseteq \mathbb{H}^n \times \mathbb{C}^n$ be an irreducible *j*-broad, *j*-free and \mathbb{H} -free variety defined over \mathbb{C} . Then $V \cap \Gamma_j \neq \emptyset$.

This is an analogue of Zilber's *Exponential Closedness* conjecture.

j-broad and j-free varieties

We will use the following notation.

- $(n) := (1, \ldots, n)$, and $\bar{k} \subseteq (n)$ means that $\bar{k} = (k_1, \ldots, k_l)$ for some $1 \le k_1 < \ldots < k_l \le n$.
- The coordinates of \mathbb{C}^{2n} will be denoted by $(z_1, \ldots, z_n, w_1, \ldots, w_n)$.

• For
$$\overline{k} = (k_1, \dots, k_l) \subseteq (n)$$
 define
 $\pi_{\overline{k}} : \mathbb{C}^n \to \mathbb{C}^l : (z_1, \dots, z_n) \mapsto (z_{k_1}, \dots, z_{k_l}),$
 $\operatorname{pr}_{\overline{k}} : \mathbb{C}^{2n} \to \mathbb{C}^{2l} : (\overline{z}, \overline{w}) \mapsto (\pi_{\overline{k}}(\overline{z}), \pi_{\overline{k}}(\overline{w})).$

Definition

Let $V \subseteq \mathbb{C}^{2n}$ be an algebraic variety.

- V is *j*-broad if for any $\bar{k} \subseteq (n)$ of length l we have dim $\operatorname{pr}_{\bar{k}} V \ge l$.
- V is *j*-free if no relation of the form $\Phi_N(w_i, w_k) = 0$ holds on V.
- V is \mathbb{H} -free if no relation of the form $z_k = gz_i$ holds on V where $g \in \mathrm{GL}_2(\mathbb{Q})$.

- A differential analogue of the EC conjecture for j (A.-Eterović-Kirby). In a differentially closed field j-broad (and j-free) varieties intersect the differential equation of the j-function.
- EC holds for varieties with dominant projection on \mathbb{H}^n (Eterović-Herrero).
- We will show that EC holds for *blurrings* of Γ_j by certain subgroups of $\operatorname{GL}_2(\mathbb{C})$.
- These are analogous to some results on the exponential function (which in turn have been motivated by Zilber's Exponential Closedness conjecture), but there are important differences.

Definition

Given a subgroup $G \subseteq \operatorname{GL}_2(\mathbb{C})$, let $\operatorname{B}_j^G \subseteq \mathbb{C}^2$ be the relation $\{(z, j(gz)) : g \in G, gz \in \mathbb{H}\}$. By abuse of notation, for every n we also let B_j^G denote the set

 $\{(z_1,\ldots,z_n,j(g_1z_1),\ldots,j(g_nz_n)):g_k\in G,g_kz_k\in\mathbb{H} \text{ for all } k\}.$

Example

- When $G \subseteq SL_2(\mathbb{Z})$, we have $B_j^G = \Gamma_j$.
- $\mathbf{B}_{j}^{\mathrm{GL}_{2}(\mathbb{C})} = \mathbb{C}^{2}.$
- $B_j^{\operatorname{GL}_2^+(\mathbb{R})} = \mathbb{H} \times \mathbb{C}.$
- $A_j := B_j^{\operatorname{GL}_2^+(\mathbb{Q})} \subseteq \mathbb{H} \times \mathbb{C}$ is the approximate j-function.

Theorem

If $V \subseteq \mathbb{C}^{2n}$ is a *j*-broad and *j*-free variety and $G \subseteq \operatorname{GL}_2(\mathbb{C})$ is a dense subgroup in the complex topology, then $V \cap \operatorname{B}_j^G$ is dense in V, and hence it is non-empty.

This is an analogue of Kirby's theorem for blurred complex exponentiation. For the j-function we can do better.

Theorem

Let $V \subseteq \mathbb{H}^n \times \mathbb{C}^n$ be an irreducible *j*-broad and *j*-free variety. Then $V \cap A_j$ is dense in V in the complex topology.

Let $J: \mathbb{H} \to \mathbb{C}^3$ be given by

$$J: z \mapsto (j(z), j'(z), j''(z)).$$

We extend J to \mathbb{H}^n by defining

$$J: \bar{z} \mapsto (j(\bar{z}), j'(\bar{z}), j''(\bar{z}))$$

where $j^{(k)}(\bar{z}) = (j^{(k)}(z_1), \ldots, j^{(k)}(z_n))$ for k = 0, 1, 2. Let $\Gamma_J \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of J for any n. We consider only the first two derivatives of j, for the higher derivatives are algebraic over those.

Conjecture (Existential Closedness for J)

Let $V \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be an irreducible *J*-broad, *J*-free and \mathbb{H} -free variety defined over \mathbb{C} . Then $V \cap \Gamma_J \neq \emptyset$.

・ロト ・ 同ト ・ ヨト ・ ヨ

- The coordinates of \mathbb{C}^{4n} will be denoted by $(\bar{z}, \bar{w}, \bar{w}_1, \bar{w}_2)$.
- For a tuple $\bar{k} = (k_1, \ldots, k_l) \subseteq (n)$ define a map

 $\Pr_{\bar{k}} : \mathbb{C}^{4n} \to \mathbb{C}^{4l} : (\bar{z}, \bar{w}, \bar{w}_1, \bar{w}_2) \mapsto (\pi_{\bar{k}}(\bar{z}), \pi_{\bar{k}}(\bar{w}), \pi_{\bar{k}}(\bar{w}_1), \pi_{\bar{k}}(\bar{w}_2)).$

Definition

- An algebraic variety $V \subseteq \mathbb{C}^{4n}$ is *J*-broad if for any $\bar{k} \subseteq (n)$ of length l we have dim $\Pr_{\bar{k}} V \ge 3l$.
- An algebraic variety $V \subseteq \mathbb{C}^{4n}$ is *J*-free if no relation of the form $\Phi_N(w_i, w_k) = 0$ holds on *V*.

・ロト ・ 同ト ・ ヨト ・ ヨ

Blurred J-function

Definition

For a subgroup $G \subseteq \operatorname{GL}_2(\mathbb{C})$ define a relation

$$\mathbf{B}_{J}^{G} := \left\{ \left(z, j(gz), \frac{d}{dz} j(gz), \frac{d^{2}}{dz^{2}} j(gz) \right) : g \in G, gz \in \mathbb{H} \right\} \subseteq \mathbb{C}^{4} \,.$$

By abuse of notation for each n we let \mathbf{B}_{J}^{G} denote the set

$$\{(\bar{z}, \bar{w}, \bar{w}_1, \bar{w}_2) : (z_k, w_k, w_{1,k}, w_{2,k}) \in \mathcal{B}_J^G \text{ for all } k\} \subseteq \mathbb{C}^{4n}$$

Theorem

Let $V \subseteq \mathbb{C}^{4n}$ be an irreducible J-broad and J-free variety, and let $G \subseteq GL_2(\mathbb{C})$ be a subgroup which is dense in the complex topology. Then $V \cap B_J^G$ is dense in V in the complex topology.

Theorem (Pila-Tsimerman)

Let $V \subseteq \mathbb{C}^{4n}$ be an algebraic variety and let U be an analytic component of the intersection $V \cap \Gamma_J$. If dim $U > \dim V - 3n$ and no coordinate is constant on $\Pr_w U$ then $\Pr_w U$ is contained in a proper special subvariety of \mathbb{C}^n .

Here \Pr_w is the projection $(\bar{z}, \bar{w}, \bar{w}_1, \bar{w}_2) \mapsto \bar{w}$.

Theorem (Ax-Schanuel without derivatives)

Let $V \subseteq \mathbb{C}^{2n}$ be an algebraic variety and let U be an analytic component of the intersection $V \cap \Gamma_j$. If dim $U > \dim V - n$ and no coordinate is constant on $\operatorname{pr}_w U$ then $\operatorname{pr}_w U$ is contained in a proper special subvariety of \mathbb{C}^n .

Here pr_w is the projection $(\overline{z}, \overline{w}) \mapsto \overline{w}$. We expect dim U to be dim $V + \dim \Gamma_j - 2n = \dim V - n$. So if dim U is larger then expected, then it must be accounted for by a weakly special variety.

Uniform Ax-Schanuel

For $g \in \operatorname{GL}_2(\mathbb{C})$ let $\mathbb{H}^g := g^{-1}\mathbb{H}$ and let $j_g : \mathbb{H}^g \to \mathbb{C}$ be the function $j_g(z) = j(gz)$. For a tuple $\bar{g} = (g_1, \ldots, g_n) \in \operatorname{GL}_2(\mathbb{C})^n$ let $\mathbb{H}^{\bar{g}} := \mathbb{H}^{g_1} \times \cdots \times \mathbb{H}^{g_n}$ and consider the function

 $j_{\bar{g}}: \mathbb{H}^{\bar{g}} \to \mathbb{C}^n : (z_1, \dots, z_n) \mapsto (j_{g_1}(z_1), \dots, j_{g_n}(z_n)).$

We let $\Gamma_j^{\bar{g}} \subseteq \mathbb{H}^{\bar{g}} \times \mathbb{C}^n$ denote the graph of $j_{\bar{g}}$. Then $\mathcal{B}_j^G = \bigcup_{\bar{g} \in G^n} \Gamma_j^{\bar{g}}$.

Theorem (Uniform Ax-Schanuel for j)

Let $(V_{\bar{s}})_{\bar{s}\in Q}$ be a parametric family of algebraic varieties in \mathbb{C}^{2n} . Then there is a finite collection Σ of proper special subvarieties of \mathbb{C}^n such that for every $\bar{s} \in Q(\mathbb{C})$ and every $\bar{g} \in \mathrm{GL}_2(\mathbb{C})^n$, if U is an analytic component of the intersection $V_{\bar{s}} \cap \Gamma_j^{\bar{g}}$ with dim $U > \dim V_{\bar{s}} - n$, and no coordinate is constant on $\mathrm{pr}_w U$, then $\mathrm{pr}_w U$ is contained in some $T \in \Sigma$.

This is equivalent to a differential algebraic statement which follows from (differential) Ax-Schanuel by a compactness argument.

EC for blurred j – proof

Let
$$\mathcal{G} := \begin{pmatrix} 1 & \mathbb{C} \\ 0 & 1 \end{pmatrix} \subseteq \mathrm{GL}_2(\mathbb{C}).$$

Theorem

If $V \subseteq \mathbb{C}^{2n}$ is a *j*-broad and *j*-free variety and G is a dense subgroup of \mathcal{G} in the complex topology then $V \cap B_j^G \neq \emptyset$.

- By *j*-broadness dim $V \ge n$. We may assume dim V = n by intersecting V with generic hyperplanes and reducing its dimension.
- Pick a fundamental domain $\mathbb{F} \subseteq \mathbb{H}$ and let $j^{-1} : \mathbb{C} \to \mathbb{F}$ be the inverse of j. It is holomorphic on $\mathbb{C}' := j(\mathbb{F}^0)$.
- Define a map $\theta : \mathbb{C}^{2n} \to \mathcal{G}^n : (\bar{z}, \bar{w}) \mapsto (g_1, \dots, g_n)$, where

$$g_k := \begin{pmatrix} 1 & j^{-1}(w_k) - z_k \\ 0 & 1 \end{pmatrix} \in \mathcal{G}.$$

• Clearly, $j(g_k z_k) = w_k$, so $(z_k, w_k) \in \Gamma_j^{g_k}$.

Image: A math a math

Proof (continued)

- For $\bar{k} = (k_1, \ldots, k_l) \subseteq (1, \ldots, n)$ and $\bar{s} \in \operatorname{pr}_{\bar{k}} V \subseteq \mathbb{C}^{2l}$ consider the fibre $V_{\bar{s}} \subseteq \mathbb{C}^{2(n-l)}$ above \bar{s} . This gives a parametric family of algebraic varieties. Let $\Sigma_{\bar{k}}$ be the collection of special subvarieties of \mathbb{C}^{n-l} given by uniform Ax-Schanuel for this family.
- By the fibre dimension theorem there is a proper Zariski closed subset $W_{\bar{k}}$ of $\operatorname{pr}_{\bar{k}} V$ such that if $\bar{s} \notin W_{\bar{k}}$ then $\dim V_{\bar{s}} = \dim V \dim \operatorname{pr}_{\bar{k}} V \leq n l$ where the last inequality follows from the assumption that V is *j*-broad.
- Consider the set

$$V' := \underbrace{V^{\operatorname{reg}}}_{V^{\operatorname{reg}}} \cap \left\{ \bar{e} \in V : \underbrace{\operatorname{pr}_{\bar{k}} \bar{e} \notin W_{\bar{k}}}_{\operatorname{pr}_{\bar{k}}}, \underbrace{\operatorname{pr}_{w} \operatorname{pr}_{\bar{k}} \bar{e} \notin \bigcup_{S \in \Sigma_{\bar{k}}} S}_{S \in \Sigma_{\bar{k}}}, \operatorname{for all} \bar{k} \right\}.$$

Then V' is a Zariski open subset of V and $V' \neq \emptyset$ as V is *j*-free.

• This allows us to apply Ax-Schanuel and the fibre dimension theorem.

Proof (continued)

- Claim. The fibres of the restriction $\zeta := \theta|_{V'}$ are discrete. **Proof.** Indeed, $(\zeta^{-1})(\bar{g}) \subseteq V' \cap \Gamma_{j}^{\bar{g}}$. Let U be an analytic component. Assume no coordinate is constant on U. Then, by uniform Ax-Schanuel, dim $U = \dim V' - n = 0$. If U has constant coordinates then we work with the fibre of U above those constants.
- By Remmert's open mapping theorem the map ζ : V' → Gⁿ is open (since dim V' = dim Gⁿ = n).
- Therefore $\zeta(V') \cap G^n \neq \emptyset$ and $V' \cap \mathcal{B}_j^G \neq \emptyset$.

イロト イポト イヨト イヨ

Consider the group
$$\mathcal{G} := \begin{pmatrix} \mathbb{R}^{>0} & \mathbb{R} \\ 0 & 1 \end{pmatrix} \subseteq \mathrm{GL}_2^+(\mathbb{R}).$$

Theorem

Let $V \subseteq \mathbb{H}^n \times \mathbb{C}^n$ be an irreducible *j*-broad and *j*-free variety defined over \mathbb{C} , and let $G \subseteq \mathcal{G}$ be a dense subgroup (in the Euclidean topology). Then $V \cap B_j^G \neq \emptyset$. In particular, this holds for $G = \operatorname{GL}_2(\mathbb{Q}) \cap \mathcal{G}$.

- Assume dim V = n.
- Let $V' \subseteq V$ be a non-empty Zariski open subset defined as above. Recall that restricting to V' allows us to apply Ax-Schanuel and the fibre dimension theorem.

(日) (同) (日) (日)

Proof (continued)

- Pick a fundamental domain $\mathbb{F} \subseteq \mathbb{H}$ and let $j^{-1} : \mathbb{C} \to \mathbb{F}$ be the inverse of j. It is definable in $\mathbb{R}_{an,exp}$.
- \mathcal{G} acts transitively on \mathbb{H} . Let $z_1 = x + iy$ and $z_2 = u + iv$ where $x, u \in \mathbb{R}, y, v \in \mathbb{R}^{>0}$. Then

$$g(z_1, z_2) := \begin{pmatrix} \frac{v}{y} & u - \frac{xv}{y} \\ 0 & 1 \end{pmatrix} \in \mathcal{G}$$

maps z_1 to z_2 , and it is the only element of \mathcal{G} with that property. • Define a map

$$\theta: \mathbb{H}^n \times \mathbb{C}^n \to \mathcal{G}^n,$$

$$\theta: (\bar{z}, \bar{w}) \mapsto (g(z_1, j^{-1}(w_1)), \dots, g(z_n, j^{-1}(w_n))),$$

and let $\zeta := \theta|_{V'}$ be the restriction of θ to V'.

• ζ is definable in $\mathbb{R}_{an,exp}$.

- Claim. The fibres of the restriction $\zeta := \theta|_{V'}$ are finite. **Proof.** As above, $(\zeta^{-1})(\bar{g}) \subseteq V' \cap \Gamma_j^{\bar{g}}$. By Ax-Schanuel, $(\zeta^{-1})(\bar{g})$ is discrete. By o-minimality it must be finite.
- Thus, $\zeta: V' \to \mathcal{G}^n$ has finite fibres and $\dim_{\mathbb{R}} V' = 2n$.
- Hence $\dim_{\mathbb{R}} \zeta(V') = 2n = \dim_{\mathbb{R}} \mathcal{G}^n$ and so $\zeta(V') \subseteq \mathcal{G}^n$ has non-empty interior.
- Since $G \subseteq \mathcal{G}$ is dense, $G^n \cap \zeta(V') \neq \emptyset$ and and $V' \cap \mathbf{B}_i^G \neq \emptyset$.

Definition

A *j*-derivation on the field of complex numbers is a derivation $\delta: \mathbb{C} \to \mathbb{C}$ such that for any $z \in \mathbb{H}$ we have

$$\delta j(z) = j'(z)\delta(z), \ \delta j'(z) = j''(z)\delta(z), \ \delta j''(z) = j'''(z)\delta(z).$$

The space of *j*-derivations is denoted by jDer(\mathbb{C}).

Let

$$C := \bigcap_{\delta \in j \operatorname{Der}(\mathbb{C})} \ker \delta.$$

Then C is a countable algebraically closed subfield of \mathbb{C} and $j(C \cap \mathbb{H}) = C$. This fact and the above definition are due to Eterović.

・ロト ・ 同ト ・ ヨト ・ ヨ

Let
$$\mathbb{C}_{\mathrm{B}_{j}^{G}} := (\mathbb{C}; +, \cdot, \mathrm{B}_{j}^{G})$$
 and $\mathbb{C}_{\mathrm{B}_{j}^{G}} := (\mathbb{C}; +, \cdot, \mathrm{B}_{j}^{G}).$

Theorem

Let C be as above and $G = \operatorname{GL}_2(C)$. Then $\mathbb{C}_{\mathrm{B}^G_j}$ is elementarily equivalent to a reduct of a differentially closed field. In particular, $\operatorname{Th}(\mathbb{C}_{\mathrm{B}^G_j})$ is ω -stable of Morley rank ω and is near model complete.

We also get an axiomatisation of $\operatorname{Th}(\mathbb{C}_{\mathbf{B}_{j}^{G}})$. It consists of basic axioms, functional equations of j, Ax-Schanuel over C (follows from Ax-Schanuel, and also from a theorem of Eterović), and Existential Closedness. A similar theorem holds for $\mathbb{C}_{\mathbf{B}_{j}^{G}}$.

Theorem

Let C be as above and $G = GL_2(C)$. Then the structures $\mathbb{C}_{B_j^G}$ and $\mathbb{C}_{B_j^G}$ are quasiminimal (every definable set is countable or co-countable).

Question

For which proper subgroups G of $PGL_2(\mathbb{C})$ is $\mathbb{C}_{B_i^G}$ quasiminimal?

- When G is uncountable, the fibres of \mathbf{B}_j^G above the second coordinate are uncountable.
- If $G \subseteq \text{PGL}_2(\mathbb{R})$, then the projection of B_i^G on the first coordinate is \mathbb{H} .
- When G is finite then the fibres of B_j^G above the first coordinate may be finite and of different cardinalities which allows one to define an uncountable co-uncountable set.
- It seems plausible that $\mathbb{C}_{\mathrm{B}^G_j}$ is quasiminimal if and only if $G \not\subseteq \mathrm{PGL}_2(\mathbb{R})$ and G is countably infinite.

Thank you

・ロト ・回ト ・ヨト ・ヨト