A remark on unlikely intersections

Vahagn Aslanyan

University of Manchester

Manchester Pure Mathematics Colloquium

8 December 2023

Vahagn Aslanyan (Manchester)

A B > 4
B > 4
B

• Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.

Image: A math a math

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

Image: A math a math

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

Image: Image:

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

Image: Image:

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

Image: A matrix and a matrix

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

Image: A matrix and a matrix

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

Image: Image:

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

• A famous example is Faltings's theorem (the Mordell conjecture) stating that certain Diophantine equations have only finitely many rational solutions.

Image: A math a math

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

• A famous example is Faltings's theorem (the Mordell conjecture) stating that certain Diophantine equations have only finitely many rational solutions. For instance, the equation $x^4 + y^4 = 1$ has only finitely many rational solutions.

Diophantine geometry (continued)

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers ξ ∈ C for which ξⁿ = 1 for some n > 0 (e.g. i⁴ = 1). These are the images of rational numbers under the function e^{2πiz}. Indeed, (e^{2πi⋅m/n})ⁿ = (e^{2πi})^m = 1.

Example

- The equation x² + y = −2 has only finitely many solutions with x, y roots of unity. In fact, the only solutions are x = ±i, y = −1.
- But x²y = 1 has infinitely many special solutions. If x = ζ is any root of unity then so is y = ζ⁻².

Theorem (Ihara, Serre, Tate)

Let f be an irreducible polynomial. Assume f(x, y) = 0 contains infinitely many points (ξ, η) whose coordinates are roots of unity. Then up to multiplication by a constant f is of the form $x^m y^n - \zeta$ where $m, n \in \mathbb{Z}$ and ζ is a root of unity. In other words, if a curve contains infinitely many points with special coordinates, then it must be of a special form.

Algebraic varieties

- An algebraic variety is a subset of \mathbb{C}^n defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^3 .
- For example, the set

 $\{(x, y, z) \in \mathbb{C}^3 : x^3 z^2 + y^3 - z^3 - 1 = 0, \ x^2 + y^2 + x z^4 = 0\}$

is an algebraic variety.

- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties. For instance, in C² the variety x² + y² = 1 is irreducible but x² + y² = 0 is reducible (it is the union of the lines x = iy and x = -iy).
- If f(X, Y, Z) ∈ C[X, Y, Z] is an irreducible polynomial then f(x, y, z) = 0 defines an irreducible (hyper)surface.
- Every algebraic variety can be decomposed into a finite union of irreducible components.
- \bullet The set $\mathbb{C}^{\times}:=\mathbb{C}\setminus\{0\}$ can be identified with the variety

$$\{(x,y)\in\mathbb{C}^2:xy=1\}\subseteq\mathbb{C}^2.$$

Dimension

- The dimension of V, written dim V, is the maximal length d of chains $V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_d \subseteq V$ of irreducible subvarieties.
- For instance, a point has dimension 0, for it has no proper non-empty subsets. A curve has dimension one as the only proper irreducible subvarieties are points. A surface has dimension 2 since we can choose a curve on it and a point on the curve to get a chain with d = 2.
- dim $\mathbb{C}^n = \dim(\mathbb{C}^{\times})^n = n$.
- dim V = 0 if and only if V is finite.
- If V ⊆ Cⁿ is defined by t independent equations, then we expect its dimension to be n t. For instance, if V is defined by a single non-constant polynomial (it is a hypersurface), then it has dimension n 1. The equation x = y defines a 1-dimensional variety in C² and a 2-dimensional variety in C³.
- The variety defined by three equations

$$x^2 - y^2 = 1$$
, $x^2 - z^2 = 1$, $x(y - z) = 0$ has dimension 1 in \mathbb{C}^3 .

(ロ) (四) (三) (三)

Algebraic tori

- Let (C[×]; ·, 1) be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case (x, y) → xy).
- Special points (roots of unity) are the torsion elements of this group, i.e. elements of finite order.
- For any n ∈ N the Cartesian power (C[×])ⁿ is also a group under coordinate-wise multiplication. Special points in (C[×])ⁿ are the torsion elements of this group, i.e. tuples of roots of unity.
- A subvariety T ⊆ (C[×])ⁿ is called an algebraic torus if it is irreducible and is a subgroup of (C[×])ⁿ.
- For example, the variety $x^5yz^2 = 1$ is an algebraic torus, for if $x_1^5y_1z_1^2 = 1$ and $x_2^5y_2z_2^2 = 1$ then $(x_1x_2)^5 \cdot (y_1y_2) \cdot (z_1z_2)^2 = 1$.
- An algebraic torus is defined by (several) multiplicative equations as above.
- Torsion cosets of tori, that is, sets of the form ζ · T where T ⊆(C[×])ⁿ is a torus and ζ is special, are known as special varieties. For example, x⁵yz³ = i is special.
- Special varieties contain infinitely many special points. If an irreducible curve contains infinitely many special points, then it must be special.

Vahagn Aslanyan (Manchester)

A remark on unlikely intersections

Manin-Mumford conjecture

Theorem (Manin-Mumford for tori; Raynaud, Hindry)

Let $V \subseteq (\mathbb{C}^{\times})^n$ be an algebraic variety. Then V contains only finitely many maximal special subvarieties.

- If V is an irreducible curve then either it is special or it contains only finitely many special points.
- If V is irreducible and contains a "Zariski dense" set of special points (too many special points) then V is special.

Example

Let $V \subseteq (\mathbb{C}^{\times})^3$ be defined by $x^3y^6 + y^2z^3 = 2$. Then the following are the maximal special subvarieties of V:

$$\begin{split} S_1 &: xy^2 = 1, \ y^2 z^3 = 1, \\ S_2 &: xy^2 = e^{2\pi i/3}, \ y^2 z^3 = 1, \\ S_3 &: xy^2 = e^{4\pi i/3}, \ y^2 z^3 = 1. \end{split}$$

Dimension of intersection

• Given two varieties V and W in \mathbb{C}^n , one expects

 $\dim(V \cap W) = \dim V + \dim W - n.$

- For instance, in \mathbb{C}^3 two planes (linear subspaces of dim 2) intersect in a line (dim 1) unless the two planes are the same.
- Suppose V is defined by t equations and W is defined by s equations. Then $V \cap W$ is defined by t + s equations, so we expect

dim V = n-t, dim W = n-s, dim $(V \cap W) = n-(s+t) = (n-t)+(n-s)-n$.

• When dim $V + \dim W < n$, V and W are not expected to intersect. Two curves in a two-dimensional space are likely to intersect, while two curves in a three-dimensional space are not. If they do intersect, then we have an unlikely intersection.

Definition

X is an atypical component of $V \cap W$ if dim $X > \dim V + \dim W - n$. Note that we always have dim $X \ge \dim V + \dim W - n$.

Special and atypical subvarieties

Definition

Torsion cosets of tori are special varieties. In $(\mathbb{C}^{\times})^3$ these are defined by equations of the form $x^a y^b z^c = \zeta$ where ζ is a root of unity and $a, b, c \in \mathbb{Z}$.

Definition

For a variety $V \subseteq (\mathbb{C}^{\times})^n$ and a special variety $S \subseteq (\mathbb{C}^{\times})^n$, an irreducible component X of the intersection $V \cap S$ is an atypical subvariety of V if

 $\dim X > \dim V + \dim S - n.$

Example

- If $V \subseteq (\mathbb{C}^{\times})^3$ is defined by the equations $xy + x^2z^3 = i + 1$, $x^5 + xy^6 + y^2 + yz^3 = i - 1$ then its intersection with the special variety xy = i, $x^2z^3 = 1$ is atypical. Indeed, the intersection is non-empty (it contains the point (1, i, 1)), and in fact has dimension 0.
- If T ⊆ V ⊊ (ℂ[×])ⁿ and T is special then it is an atypical subvariety of V, for dim T > dim V + dim T − n.

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in $(\mathbb{C}^{\times})^n$ contains only finitely many maximal atypical subvarieties.

Remark

Since special subvarieties of V are atypical, CIT implies Manin-Mumford.

The following is a special case of CIT.

Theorem (Bombieri-Masser-Zannier, Maurin)

Let $V \subseteq (\mathbb{C}^{\times})^3$ be a curve not contained in a proper special subvariety of $(\mathbb{C}^{\times})^3$. Then V contains only finitely many points (a_1, a_2, a_3) which satisfy two independent multiplicative relations.

(a)

Weakly special varieties and closures

Definition

- Arbitrary cosets of algebraic tori are called weakly special varieties. For instance, in (C[×])³ the variety xyz⁶ = π is weakly special.
- Let X ⊆(C[×])ⁿ. The (weakly) special closure of X is the smallest (weakly) special subvariety containing X.

Example

- Let $V \subseteq (\mathbb{C}^{\times})^3$ be defined by x + y = 1, $xy^3z^2 = \pi$. Then the weakly special closure of V is the coset $xy^3z^2 = \pi$. The special closure of V is $(\mathbb{C}^{\times})^3$.
- Let $V \subseteq (\mathbb{C}^{\times})^3$ be defined by x + y = 1, $xy^3z^2 = i$. Then the weakly special closure of V is equal to its special closure and is defined by $xy^3z^2 = i$.
- Let $V \subseteq (\mathbb{C}^{\times})^3$ be the point (π, π^2, π^3) (defined by $x = \pi, y = \pi^2, z = \pi^3$). Then the weakly special closure of V is V itself, while its special closure is the torus $y = x^2, z = x^3$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Theorem (A.)

Every variety $V \subseteq (\mathbb{C}^{\times})^n$ contains only finitely many maximal atypical subvarieties whose weakly special closures are special. In particular, V contains only finitely many maximal atypical subvarieties which contain a special point.

Remark

In $(\mathbb{C}^{\times})^3$ this is just Manin-Mumford and does not imply the theorem of Bombieri-Masser-Zannier and Maurin. For n > 3 this is stronger than Manin-Mumford.

Image: A math a math

Proof sketch

Theorem (A.)

For every variety $V \subseteq (\mathbb{C}^{\times})^n$ there is a finite collection Σ of proper special subvarieties of $(\mathbb{C}^{\times})^n$ such that every atypical subvariety of V, whose weakly special closures is special, is contained in some $T \in \Sigma$.

- By Weak/Functional/Geometric CIT, an atypical subvariety X of V is contained in a coset of a torus T from a finite collection of tori.
- The set

$$\mathcal{C} := \{ c \in (\mathbb{C}^{\times})^n : V \cap cT \text{ is atypical in } (\mathbb{C}^{\times})^n \}$$

is a proper Zariski closed subset of $(\mathbb{C}^{\times})^n$. Roughly, this is because generic varieties intersect typically.

- Now if the weakly special closure of X is special, then X is contained in a torsion coset of T. So we are looking for torsion points in C.
- By Manin-Mumford, all torsion points in *C* are contained in finitely many maximal special subvarieties of *C*. Now combine these with the finite collection of tori given by weak CIT.

Generalisations and analogues

- There is a generalisation of the Manin-Mumford conjecture, known as Mordell-Lang (Faltings, Vojta, McQuillan,...). It deals with general semi-abelian varieties instead of algebraic tori and arbitrary finite ranks subgroups instead of torsion subgroups. It can be combined with Weak CIT to produce a stronger theorem.
- There is an analogue of Manin-Mumford in the modular setting, known as André-Oort (Pila). Similarly, there is a modular Mordell-Lang (Habegger-Pila). I proved analogous results in this setting.
- With Chris Daw (Reading) we generalised the above to Shimura varieties where André-Oort (Pila-Shankar-Tsimerman) and Mordell-Lang (in the form of André-Pink-Zannier, Richard-Yafaev) are now known.
- The analogue of CIT in these setting is known as Zilber-Pink. Its weak/functional/geometric version is a consequence of the Ax-Schanuel theorem in the appropriate setting.

・ロト ・回ト ・ヨト ・

Thank you

æ

э

イロト イロト イヨト