A remark on unlikely intersections

Vahagn Aslanyan

University of Manchester
Manchester Pure Mathematics Colloquium
8 December 2023

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

- A famous example is Faltings's theorem (the Mordell conjecture) stating that certain Diophantine equations have only finitely many rational solutions.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

- A famous example is Faltings's theorem (the Mordell conjecture) stating that certain Diophantine equations have only finitely many rational solutions. For instance, the equation $x^{4}+y^{4}=1$ has only finitely many rational solutions.

Diophantine geometry (continued)

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers $\xi \in \mathbb{C}$ for which $\xi^{n}=1$ for some $n>0$ (e.g. $i^{4}=1$). These are the images of rational numbers under the function $e^{2 \pi i z}$. Indeed, $\left(e^{2 \pi i \cdot \frac{m}{n}}\right)^{n}=\left(e^{2 \pi i}\right)^{m}=1$.

Example

- The equation $x^{2}+y=-2$ has only finitely many solutions with x, y roots of unity. In fact, the only solutions are $x= \pm i, y=-1$.
- But $x^{2} y=1$ has infinitely many special solutions. If $x=\zeta$ is any root of unity then so is $y=\zeta^{-2}$.

Theorem (Ihara, Serre, Tate)

Let f be an irreducible polynomial. Assume $f(x, y)=0$ contains infinitely many points (ξ, η) whose coordinates are roots of unity. Then up to multiplication by a constant f is of the form $x^{m} y^{n}-\zeta$ where $m, n \in \mathbb{Z}$ and ζ is a root of unity. In other words, if a curve contains infinitely many points with special coordinates, then it must be of a special form.

Algebraic varieties

- An algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^{3}.
- For example, the set

$$
\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}
$$

is an algebraic variety.

- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties. For instance, in \mathbb{C}^{2} the variety $x^{2}+y^{2}=1$ is irreducible but $x^{2}+y^{2}=0$ is reducible (it is the union of the lines $x=i y$ and $x=-i y)$.
- If $f(X, Y, Z) \in \mathbb{C}[X, Y, Z]$ is an irreducible polynomial then $f(x, y, z)=0$ defines an irreducible (hyper)surface.
- Every algebraic variety can be decomposed into a finite union of irreducible components.
- The set $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$ can be identified with the variety

$$
\left\{(x, y) \in \mathbb{C}^{2}: x y=1\right\} \subseteq \mathbb{C}^{2}
$$

Dimension

- The dimension of V, written $\operatorname{dim} V$, is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.
- For instance, a point has dimension 0 , for it has no proper non-empty subsets. A curve has dimension one as the only proper irreducible subvarieties are points. A surface has dimension 2 since we can choose a curve on it and a point on the curve to get a chain with $d=2$.
- $\operatorname{dim} \mathbb{C}^{n}=\operatorname{dim}\left(\mathbb{C}^{\times}\right)^{n}=n$.
- $\operatorname{dim} V=0$ if and only if V is finite.
- If $V \subseteq \mathbb{C}^{n}$ is defined by t independent equations, then we expect its dimension to be $n-t$. For instance, if V is defined by a single non-constant polynomial (it is a hypersurface), then it has dimension $n-1$. The equation $x=y$ defines a 1-dimensional variety in \mathbb{C}^{2} and a 2-dimensional variety in \mathbb{C}^{3}.
- The variety defined by three equations $x^{2}-y^{2}=1, x^{2}-z^{2}=1, x(y-z)=0$ has dimension 1 in \mathbb{C}^{3}.

Algebraic tori

- Let $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$ be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case $(x, y) \mapsto x y$).
- Special points (roots of unity) are the torsion elements of this group, i.e. elements of finite order.
- For any $n \in \mathbb{N}$ the Cartesian power $\left(\mathbb{C}^{\times}\right)^{n}$ is also a group under coordinate-wise multiplication. Special points in $\left(\mathbb{C}^{\times}\right)^{n}$ are the torsion elements of this group, i.e. tuples of roots of unity.
- A subvariety $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is called an algebraic torus if it is irreducible and is a subgroup of $\left(\mathbb{C}^{\times}\right)^{n}$.
- For example, the variety $x^{5} y z^{2}=1$ is an algebraic torus, for if $x_{1}^{5} y_{1} z_{1}^{2}=1$ and $x_{2}^{5} y_{2} z_{2}^{2}=1$ then $\left(x_{1} x_{2}\right)^{5} \cdot\left(y_{1} y_{2}\right) \cdot\left(z_{1} z_{2}\right)^{2}=1$.
- An algebraic torus is defined by (several) multiplicative equations as above.
- Torsion cosets of tori, that is, sets of the form $\zeta \cdot T$ where $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is a torus and ζ is special, are known as special varieties. For example, $x^{5} y z^{3}=i$ is special.
- Special varieties contain infinitely many special points. If an irreducible curve contains infinitely many special points, then it must be special.

Manin-Mumford conjecture

Theorem (Manin-Mumford for tori; Raynaud, Hindry)

Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be an algebraic variety. Then V contains only finitely many maximal special subvarieties.

- If V is an irreducible curve then either it is special or it contains only finitely many special points.
- If V is irreducible and contains a "Zariski dense" set of special points (too many special points) then V is special.

Example

Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{3}$ be defined by $x^{3} y^{6}+y^{2} z^{3}=2$. Then the following are the maximal special subvarieties of V :

$$
\begin{aligned}
& S_{1}: x y^{2}=1, y^{2} z^{3}=1, \\
& S_{2}: x y^{2}=e^{2 \pi i / 3}, y^{2} z^{3}=1, \\
& S_{3}: x y^{2}=e^{4 \pi i / 3}, y^{2} z^{3}=1 .
\end{aligned}
$$

Dimension of intersection

- Given two varieties V and W in \mathbb{C}^{n}, one expects

$$
\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W-n
$$

- For instance, in \mathbb{C}^{3} two planes (linear subspaces of dim 2) intersect in a line ($\operatorname{dim} 1$) unless the two planes are the same.
- Suppose V is defined by t equations and W is defined by s equations. Then $V \cap W$ is defined by $t+s$ equations, so we expect $\operatorname{dim} V=n-t, \operatorname{dim} W=n-s, \operatorname{dim}(V \cap W)=n-(s+t)=(n-t)+(n-s)-n$.
- When $\operatorname{dim} V+\operatorname{dim} W<n, V$ and W are not expected to intersect. Two curves in a two-dimensional space are likely to intersect, while two curves in a three-dimensional space are not. If they do intersect, then we have an unlikely intersection.

Definition

X is an atypical component of $V \cap W$ if $\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} W-n$. Note that we always have $\operatorname{dim} X \geq \operatorname{dim} V+\operatorname{dim} W-n$.

Special and atypical subvarieties

Definition

Torsion cosets of tori are special varieties. In $\left(\mathbb{C}^{\times}\right)^{3}$ these are defined by equations of the form $x^{a} y^{b} z^{c}=\zeta$ where ζ is a root of unity and $a, b, c \in \mathbb{Z}$.

Definition

For a variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ and a special variety $S \subseteq\left(\mathbb{C}^{\times}\right)^{n}$, an irreducible component X of the intersection $V \cap S$ is an atypical subvariety of V if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} S-n
$$

Example

- If $V \subseteq\left(\mathbb{C}^{\times}\right)^{3}$ is defined by the equations $x y+x^{2} z^{3}=i+1, x^{5}+x y^{6}+y^{2}+y z^{3}=i-1$ then its intersection with the special variety $x y=i, x^{2} z^{3}=1$ is atypical. Indeed, the intersection is non-empty (it contains the point $(1, i, 1)$), and in fact has dimension 0 .
- If $T \subseteq V \subsetneq\left(\mathbb{C}^{\times}\right)^{n}$ and T is special then it is an atypical subvariety of V, for $\operatorname{dim} T>\operatorname{dim} V+\operatorname{dim} T-n$.

Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in $\left(\mathbb{C}^{\times}\right)^{n}$ contains only finitely many maximal atypical subvarieties.

Remark

Since special subvarieties of V are atypical, CIT implies Manin-Mumford.
The following is a special case of CIT.

Theorem (Bombieri-Masser-Zannier, Maurin)

Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{3}$ be a curve not contained in a proper special subvariety of $\left(\mathbb{C}^{\times}\right)^{3}$. Then V contains only finitely many points $\left(a_{1}, a_{2}, a_{3}\right)$ which satisfy two independent multiplicative relations.

Weakly special varieties and closures

Definition

- Arbitrary cosets of algebraic tori are called weakly special varieties. For instance, in $\left(\mathbb{C}^{\times}\right)^{3}$ the variety $x y z^{6}=\pi$ is weakly special.
- Let $X \subseteq\left(\mathbb{C}^{\times}\right)^{n}$. The (weakly) special closure of X is the smallest (weakly) special subvariety containing X.

Example

- Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{3}$ be defined by $x+y=1, x y^{3} z^{2}=\pi$. Then the weakly special closure of V is the coset $x y^{3} z^{2}=\pi$. The special closure of V is $\left(\mathbb{C}^{\times}\right)^{3}$.
- Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{3}$ be defined by $x+y=1, x y^{3} z^{2}=i$. Then the weakly special closure of V is equal to its special closure and is defined by $x y^{3} z^{2}=i$.
- Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{3}$ be the point $\left(\pi, \pi^{2}, \pi^{3}\right)$ (defined by $\left.x=\pi, y=\pi^{2}, z=\pi^{3}\right)$. Then the weakly special closure of V is V itself, while its special closure is the torus $y=x^{2}, z=x^{3}$.

A weak version of CIT

Theorem (A.)

Every variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ contains only finitely many maximal atypical subvarieties whose weakly special closures are special.
In particular, V contains only finitely many maximal atypical subvarieties which contain a special point.

Remark

In $\left(\mathbb{C}^{\times}\right)^{3}$ this is just Manin-Mumford and does not imply the theorem of Bombieri-Masser-Zannier and Maurin. For $n>3$ this is stronger than Manin-Mumford.

Proof sketch

Theorem (A.)

For every variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ there is a finite collection Σ of proper special subvarieties of $\left(\mathbb{C}^{\times}\right)^{n}$ such that every atypical subvariety of V, whose weakly special closures is special, is contained in some $T \in \Sigma$.

- By Weak/Functional/Geometric CIT, an atypical subvariety X of V is contained in a coset of a torus T from a finite collection of tori.
- The set

$$
C:=\left\{c \in\left(\mathbb{C}^{\times}\right)^{n}: V \cap c T \text { is atypical in }\left(\mathbb{C}^{\times}\right)^{n}\right\}
$$

is a proper Zariski closed subset of $\left(\mathbb{C}^{\times}\right)^{n}$. Roughly, this is because generic varieties intersect typically.

- Now if the weakly special closure of X is special, then X is contained in a torsion coset of T. So we are looking for torsion points in C.
- By Manin-Mumford, all torsion points in C are contained in finitely many maximal special subvarieties of C. Now combine these with the finite collection of tori given by weak CIT.

Generalisations and analogues

- There is a generalisation of the Manin-Mumford conjecture, known as Mordell-Lang (Faltings, Vojta, McQuillan,...). It deals with general semi-abelian varieties instead of algebraic tori and arbitrary finite ranks subgroups instead of torsion subgroups. It can be combined with Weak CIT to produce a stronger theorem.
- There is an analogue of Manin-Mumford in the modular setting, known as André-Oort (Pila). Similarly, there is a modular Mordell-Lang (Habegger-Pila). I proved analogous results in this setting.
- With Chris Daw (Reading) we generalised the above to Shimura varieties where André-Oort (Pila-Shankar-Tsimerman) and Mordell-Lang (in the form of André-Pink-Zannier, Richard-Yafaev) are now known.
- The analogue of CIT in these setting is known as Zilber-Pink. Its weak/functional/geometric version is a consequence of the Ax-Schanuel theorem in the appropriate setting.

Thank you

