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Diophantine geometry

Diophantine geometry is a branch of number theory studying integral or
rational solutions of polynomial equations (Diophantine equations) using
geometric tools.

For example, rational solutions to the equation x2 + y2 = 1 can be
interpreted as rational points on the unit circle.
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A famous example is Faltings’s theorem (the Mordell conjecture) stating that
certain Diophantine equations have only finitely many rational solutions. For
instance, the equation x4 + y4 = 1 has only finitely many rational solutions.
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Diophantine geometry (continued)

We are often interested in special solutions of polynomial equations.
Examples of special points are roots of unity, i.e. numbers ξ ∈ C for which
ξn = 1 for some n > 0 (e.g. i4 = 1). These are the images of rational
numbers under the function e2πiz . Indeed,

(
e2πi·mn

)n
= (e2πi )m = 1.

Example
The equation x2 + y = −2 has only finitely many solutions with x , y roots of
unity. In fact, the only solutions are x = ±i , y = −1.
But x2y = 1 has infinitely many special solutions. If x = ζ is any root of
unity then so is y = ζ−2.

Theorem (Ihara, Serre, Tate)
Let f be an irreducible polynomial. Assume f (x , y) = 0 contains infinitely many
points (ξ, η) whose coordinates are roots of unity. Then up to multiplication by a
constant f is of the form xmyn − ζ where m, n ∈ Z and ζ is a root of unity.
In other words, if a curve contains infinitely many points with special coordinates,
then it must be of a special form.
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Algebraic varieties

An algebraic variety is a subset of Cn defined by several polynomial
equations. Throughout the talk we may assume n ≤ 3 and will let x , y , z
denote the coordinates on C3.
For example, the set

{(x , y , z) ∈ C3 : x3z2 + y3 − z3 − 1 = 0, x2 + y2 + xz4 = 0}

is an algebraic variety.
An algebraic variety V is irreducible if it cannot be decomposed into a union
of two proper algebraic subvarieties. For instance, in C2 the variety
x2 + y2 = 1 is irreducible but x2 + y2 = 0 is reducible (it is the union of the
lines x = iy and x = −iy).
If f (X ,Y ,Z ) ∈ C[X ,Y ,Z ] is an irreducible polynomial then f (x , y , z) = 0
defines an irreducible (hyper)surface.
Every algebraic variety can be decomposed into a finite union of irreducible
components.
The set C× := C \ {0} can be identified with the variety

{(x , y) ∈ C2 : xy = 1} ⊆ C2.
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Dimension

The dimension of V , written dimV , is the maximal length d of chains
V0 ( V1 ( . . . ( Vd ⊆ V of irreducible subvarieties.
For instance, a point has dimension 0, for it has no proper non-empty
subsets. A curve has dimension one as the only proper irreducible subvarieties
are points. A surface has dimension 2 since we can choose a curve on it and
a point on the curve to get a chain with d = 2.
dimCn = dim(C×)n = n.
dimV = 0 if and only if V is finite.
If V ⊆ Cn is defined by t independent equations, then we expect its
dimension to be n − t. For instance, if V is defined by a single non-constant
polynomial (it is a hypersurface), then it has dimension n − 1. The equation
x = y defines a 1-dimensional variety in C2 and a 2-dimensional variety in C3.
The variety defined by three equations
x2 − y2 = 1, x2 − z2 = 1, x(y − z) = 0 has dimension 1 in C3.
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Algebraic tori

Let (C×; ·, 1) be the multiplicative group of non-zero complex numbers. It is
an algebraic group, i.e. an algebraic variety where the group operation is
given by a polynomial map (in this case (x , y) 7→ xy).
Special points (roots of unity) are the torsion elements of this group, i.e.
elements of finite order.
For any n ∈ N the Cartesian power (C×)n is also a group under
coordinate-wise multiplication. Special points in (C×)n are the torsion
elements of this group, i.e. tuples of roots of unity.
A subvariety T ⊆ (C×)n is called an algebraic torus if it is irreducible and is a
subgroup of (C×)n.
For example, the variety x5yz2 = 1 is an algebraic torus, for if x5

1 y1z
2
1 = 1

and x5
2 y2z

2
2 = 1 then (x1x2)5 · (y1y2) · (z1z2)2 = 1.

An algebraic torus is defined by (several) multiplicative equations as above.
Torsion cosets of tori, that is, sets of the form ζ · T where T ⊆(C×)n is a
torus and ζ is special, are known as special varieties. For example, x5yz3 = i
is special.
Special varieties contain infinitely many special points. If an irreducible curve
contains infinitely many special points, then it must be special.
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Manin-Mumford conjecture

Theorem (Manin-Mumford for tori; Raynaud, Hindry)

Let V ⊆(C×)n be an algebraic variety. Then V contains only finitely many
maximal special subvarieties.

If V is an irreducible curve then either it is special or it contains only finitely
many special points.
If V is irreducible and contains a “Zariski dense” set of special points (too
many special points) then V is special.

Example
Let V ⊆(C×)3 be defined by x3y6 + y2z3 = 2. Then the following are the
maximal special subvarieties of V :

S1 : xy2 = 1, y2z3 = 1,

S2 : xy2 = e2πi/3, y2z3 = 1,

S3 : xy2 = e4πi/3, y2z3 = 1.
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Dimension of intersection

Given two varieties V and W in Cn, one expects

dim(V ∩W ) = dimV + dimW − n.

For instance, in C3 two planes (linear subspaces of dim 2) intersect in a line
(dim 1) unless the two planes are the same.
Suppose V is defined by t equations and W is defined by s equations. Then
V ∩W is defined by t + s equations, so we expect

dimV = n−t, dimW = n−s, dim(V∩W ) = n−(s+t) = (n−t)+(n−s)−n.
When dimV + dimW < n, V and W are not expected to intersect. Two
curves in a two-dimensional space are likely to intersect, while two curves in a
three-dimensional space are not. If they do intersect, then we have an
unlikely intersection.

Definition
X is an atypical component of V ∩W if dimX > dimV + dimW − n. Note that
we always have dimX ≥ dimV + dimW − n.
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Special and atypical subvarieties

Definition
Torsion cosets of tori are special varieties. In (C×)3 these are defined by equations
of the form xaybzc = ζ where ζ is a root of unity and a, b, c ∈ Z.

Definition
For a variety V ⊆ (C×)n and a special variety S ⊆ (C×)n, an irreducible
component X of the intersection V ∩ S is an atypical subvariety of V if

dimX > dimV + dim S − n.

Example
If V ⊆(C×)3 is defined by the equations
xy + x2z3 = i + 1, x5 + xy6 + y2 + yz3 = i − 1 then its intersection with the
special variety xy = i , x2z3 = 1 is atypical. Indeed, the intersection is
non-empty (it contains the point (1, i , 1)), and in fact has dimension 0.
If T ⊆ V ( (C×)n and T is special then it is an atypical subvariety of V , for
dimT > dimV + dimT − n.
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Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in (C×)n contains only finitely many maximal atypical
subvarieties.

Remark
Since special subvarieties of V are atypical, CIT implies Manin-Mumford.

The following is a special case of CIT.

Theorem (Bombieri-Masser-Zannier, Maurin)

Let V ⊆(C×)3 be a curve not contained in a proper special subvariety of (C×)3.
Then V contains only finitely many points (a1, a2, a3) which satisfy two
independent multiplicative relations.
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Weakly special varieties and closures

Definition
Arbitrary cosets of algebraic tori are called weakly special varieties. For
instance, in (C×)3 the variety xyz6 = π is weakly special.
Let X ⊆(C×)n. The (weakly) special closure of X is the smallest (weakly)
special subvariety containing X .

Example
Let V ⊆(C×)3 be defined by x + y = 1, xy3z2 = π. Then the weakly special
closure of V is the coset xy3z2 = π. The special closure of V is (C×)3.
Let V ⊆(C×)3 be defined by x + y = 1, xy3z2 = i . Then the weakly special
closure of V is equal to its special closure and is defined by xy3z2 = i .
Let V ⊆(C×)3 be the point (π, π2, π3) (defined by x = π, y = π2, z = π3).
Then the weakly special closure of V is V itself, while its special closure is
the torus y = x2, z = x3.
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A weak version of CIT

Theorem (A.)

Every variety V ⊆ (C×)n contains only finitely many maximal atypical subvarieties
whose weakly special closures are special.
In particular, V contains only finitely many maximal atypical subvarieties which
contain a special point.

Remark
In (C×)3 this is just Manin-Mumford and does not imply the theorem of
Bombieri-Masser-Zannier and Maurin. For n > 3 this is stronger than
Manin-Mumford.
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Proof sketch

Theorem (A.)

For every variety V ⊆ (C×)n there is a finite collection Σ of proper special
subvarieties of (C×)n such that every atypical subvariety of V , whose weakly
special closures is special, is contained in some T ∈ Σ.

By Weak/Functional/Geometric CIT, an atypical subvariety X of V is
contained in a coset of a torus T from a finite collection of tori.
The set

C := {c ∈ (C×)n : V ∩ cT is atypical in (C×)n}

is a proper Zariski closed subset of (C×)n. Roughly, this is because generic
varieties intersect typically.
Now if the weakly special closure of X is special, then X is contained in a
torsion coset of T . So we are looking for torsion points in C .
By Manin-Mumford, all torsion points in C are contained in finitely many
maximal special subvarieties of C . Now combine these with the finite
collection of tori given by weak CIT.
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Generalisations and analogues

There is a generalisation of the Manin-Mumford conjecture, known as
Mordell-Lang (Faltings, Vojta, McQuillan,...). It deals with general
semi-abelian varieties instead of algebraic tori and arbitrary finite ranks
subgroups instead of torsion subgroups. It can be combined with Weak CIT
to produce a stronger theorem.
There is an analogue of Manin-Mumford in the modular setting, known as
André-Oort (Pila). Similarly, there is a modular Mordell-Lang
(Habegger-Pila). I proved analogous results in this setting.
With Chris Daw (Reading) we generalised the above to Shimura varieties
where André-Oort (Pila-Shankar-Tsimerman) and Mordell-Lang (in the form
of André-Pink-Zannier, Richard-Yafaev) are now known.
The analogue of CIT in these setting is known as Zilber-Pink. Its
weak/functional/geometric version is a consequence of the Ax-Schanuel
theorem in the appropriate setting.
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Thank you
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