Functional Modular Zilber-Pink with Derivatives

Vahagn Aslanyan
University of East Anglia
Oxford
7 November 2019

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.
- $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ we define

$$
g z=\frac{a z+b}{c z+d}
$$

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.
- $\mathrm{GL}_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ we define

$$
g z=\frac{a z+b}{c z+d}
$$

- The function $j: \mathbb{H} \rightarrow \mathbb{C}$ is a modular function of weight 0 for the modular group $\mathrm{SL}_{2}(\mathbb{Z})$ defined and analytic on \mathbb{H}.

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.
- $G L_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ we define

$$
g z=\frac{a z+b}{c z+d}
$$

- The function $j: \mathbb{H} \rightarrow \mathbb{C}$ is a modular function of weight 0 for the modular group $\mathrm{SL}_{2}(\mathbb{Z})$ defined and analytic on \mathbb{H}.
- $j(g z)=j(z)$ for all $g \in \mathrm{SL}_{2}(\mathbb{Z})$.

The j-function

- Let $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$ be the complex upper half-plane.
- $G L_{2}^{+}(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}^{+}(\mathbb{R})$ we define

$$
g z=\frac{a z+b}{c z+d}
$$

- The function $j: \mathbb{H} \rightarrow \mathbb{C}$ is a modular function of weight 0 for the modular group $\mathrm{SL}_{2}(\mathbb{Z})$ defined and analytic on \mathbb{H}.
- $j(g z)=j(z)$ for all $g \in \mathrm{SL}_{2}(\mathbb{Z})$.
- By means of j the quotient $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ is identified with \mathbb{C} (thus, j is a bijection from the fundamental domain of $\mathrm{SL}_{2}(\mathbb{Z})$ to $\left.\mathbb{C}\right)$.

Modular polynomials

- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.

Modular polynomials

- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_{N}(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$, the function $\Phi_{N}(j(z), j(g z))$ is identically zero.

Modular polynomials

- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_{N}(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$, the function $\Phi_{N}(j(z), j(g z))$ is identically zero.
- Conversely, if $\Phi_{N}(j(x), j(y))=0$ for some $x, y \in \mathbb{H}$ then $y=g x$ for some $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$.

Modular polynomials

- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_{N}(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$, the function $\Phi_{N}(j(z), j(g z))$ is identically zero.
- Conversely, if $\Phi_{N}(j(x), j(y))=0$ for some $x, y \in \mathbb{H}$ then $y=g x$ for some $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$.
- The polynomials Φ_{N} are called modular polynomials.

Modular polynomials

- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_{N}(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$, the function $\Phi_{N}(j(z), j(g z))$ is identically zero.
- Conversely, if $\Phi_{N}(j(x), j(y))=0$ for some $x, y \in \mathbb{H}$ then $y=g x$ for some $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$.
- The polynomials Φ_{N} are called modular polynomials.
- $\Phi_{1}(X, Y)=X-Y$ and all the other modular polynomials are symmetric.

Modular polynomials

- For $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ we let $N(g)$ be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_{N}(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$, the function $\Phi_{N}(j(z), j(g z))$ is identically zero.
- Conversely, if $\Phi_{N}(j(x), j(y))=0$ for some $x, y \in \mathbb{H}$ then $y=g x$ for some $g \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$ with $N=N(g)$.
- The polynomials Φ_{N} are called modular polynomials.
- $\Phi_{1}(X, Y)=X-Y$ and all the other modular polynomials are symmetric.
- Two elements $w_{1}, w_{2} \in \mathbb{C}$ are called modularly independent if they do not satisfy any modular relation $\Phi_{N}\left(w_{1}, w_{2}\right)=0$.

j-special varieties

Definition

A j-special subvariety of \mathbb{C}^{n} (coordinatised by \bar{y}) is an irreducible component of a variety defined by modular equations, i.e. equations of the form $\Phi_{N}\left(y_{i}, y_{k}\right)=0$ for some $1 \leq i, k \leq n$ where $\Phi_{N}(X, Y)$ is a modular polynomial.

j-special varieties

Definition

A j-special subvariety of \mathbb{C}^{n} (coordinatised by \bar{y}) is an irreducible component of a variety defined by modular equations, i.e. equations of the form $\Phi_{N}\left(y_{i}, y_{k}\right)=0$ for some $1 \leq i, k \leq n$ where $\Phi_{N}(X, Y)$ is a modular polynomial.

Definition

A subvariety $U \subseteq \mathbb{H}^{n}$ (i.e. an intersection of \mathbb{H}^{n} with some algebraic variety) is called \mathbb{H}-special if it is defined by some equations of the form $z_{i}=g_{i, k} z_{k}, i \neq k$, with $g_{i, k} \in \mathrm{GL}_{2}^{+}(\mathbb{Q})$, and some equations of the form $z_{i}=\tau_{i}$ where $\tau_{i} \in \mathbb{H}$ is a quadratic number. For such a U the image $j(U)$ is j-special (j is identified with its Cartesian powers).

Modular Zilber-Pink without Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{n}$ and a special variety $S \subseteq \mathbb{C}^{n}$, a component X of the intersection $V \cap S$ is an atypical subvariety of V if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} S-n
$$

Modular Zilber-Pink without Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{n}$ and a special variety $S \subseteq \mathbb{C}^{n}$, a component X of the intersection $V \cap S$ is an atypical subvariety of V if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} S-n
$$

Conjecture (Modular Zilber-Pink)

Every algebraic variety in \mathbb{C}^{n} contains only finitely many maximal atypical subvarieties.

Weak Modular Zilber-Pink without Derivatives

Definition

An atypical subvariety X of $V \subseteq \mathbb{C}^{n}$ is strongly atypical if no coordinate is constant on X.

Weak Modular Zilber-Pink without Derivatives

Definition

An atypical subvariety X of $V \subseteq \mathbb{C}^{n}$ is strongly atypical if no coordinate is constant on X.

Theorem (Pila-Tsimerman, 2015)

Every algebraic variety in \mathbb{C}^{n} contains only finitely many maximal strongly atypical subvarieties.

J-special varieties

Define a function $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ by

$$
J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)
$$

We extend J to \mathbb{H}^{n} by defining

$$
J: \bar{z} \mapsto\left(j(\bar{z}), j^{\prime}(\bar{z}), j^{\prime \prime}(\bar{z})\right)
$$

where $j^{(k)}(\bar{z})=\left(j^{(k)}\left(z_{1}\right), \ldots, j^{(k)}\left(z_{n}\right)\right)$ for $k=0,1,2$. Note that $j^{\prime \prime \prime}(z)$ is algebraic over $j, j^{\prime}, j^{\prime \prime}$.

J-special varieties

Define a function $J: \mathbb{H} \rightarrow \mathbb{C}^{3}$ by

$$
J: z \mapsto\left(j(z), j^{\prime}(z), j^{\prime \prime}(z)\right)
$$

We extend J to \mathbb{H}^{n} by defining

$$
J: \bar{z} \mapsto\left(j(\bar{z}), j^{\prime}(\bar{z}), j^{\prime \prime}(\bar{z})\right)
$$

where $j^{(k)}(\bar{z})=\left(j^{(k)}\left(z_{1}\right), \ldots, j^{(k)}\left(z_{n}\right)\right)$ for $k=0,1,2$. Note that $j^{\prime \prime \prime}(z)$ is algebraic over $j, j^{\prime}, j^{\prime \prime}$.

Definition (Pila)

Let $U \subseteq \mathbb{H}^{n}$ be \mathbb{H}-special. We denote by $\langle\langle U\rangle\rangle \subseteq \mathbb{C}^{3 n}$ the Zariski closure of $J(U)$ over $\mathbb{Q}^{\text {alg }}$. These are the J-special varieties in $\mathbb{C}^{3 n}$.

Remark

J-special varieties are irreducible. Strongly J-special varieties (no constant coordinates) are equal to the product of j-blocks (where all j-coordinates are pairwise modularly related) each of which has dimension 3 or 4 .

Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{3 n}$ we let the J-atypical set of V, denoted $\operatorname{Atyp}_{J}(V)$, be the union of all atypical components of intersections $V \cap T$ in $\mathbb{C}^{3 n}$ where $T \subseteq \mathbb{C}^{3 n}$ is a J-special variety.

Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{3 n}$ we let the J-atypical set of V, denoted $\operatorname{Atyp}_{J}(V)$, be the union of all atypical components of intersections $V \cap T$ in $\mathbb{C}^{3 n}$ where $T \subseteq \mathbb{C}^{3 n}$ is a J-special variety.

Conjecture (Pila, "MZPD")

For every algebraic variety $V \subseteq \mathbb{C}^{3 n}$ there is a finite collection Σ of proper \mathbb{H}-special subvarieties of \mathbb{H}^{n} such that

$$
\operatorname{Atyp}_{J}(V) \cap J\left(\mathbb{H}^{n}\right) \subseteq \bigcup_{\bar{U} \in \mathrm{~S}_{2}(\mathbb{Z})^{n}}\langle\langle\bar{\gamma} U\rangle\rangle
$$

Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{3 n}$ we let the J-atypical set of V, denoted $\operatorname{Atyp}_{J}(V)$, be the union of all atypical components of intersections $V \cap T$ in $\mathbb{C}^{3 n}$ where $T \subseteq \mathbb{C}^{3 n}$ is a J-special variety.

Conjecture (Pila, "MZPD")

For every algebraic variety $V \subseteq \mathbb{C}^{3 n}$ there is a finite collection Σ of proper \mathbb{H}-special subvarieties of \mathbb{H}^{n} such that

$$
\operatorname{Atyp}_{J}(V) \cap J\left(\mathbb{H}^{n}\right) \subseteq \bigcup_{\substack{U \in \sum \\ \bar{\gamma} \in \mathrm{~S}_{2}(\mathbb{Z})^{n}}}\langle\langle\bar{\gamma} U\rangle\rangle
$$

Remark

Here we may need infinitely many J-special subvarieties to cover the atypical set of V.

Weak Modular Zilber-Pink with Derivatives

Definition

For a J-special variety $T \subseteq \mathbb{C}^{3 n}$ and an algebraic variety $V \subseteq \mathbb{C}^{3 n}$ an atypical component X of an intersection $V \cap T$ in $\mathbb{C}^{3 n}$ is a strongly J-atypical subvariety of V if for every irreducible analytic component Y of $X \cap J\left(\mathbb{H}^{n}\right)$, no coordinate is constant on Y. The strongly J-atypical set of V, denoted $\operatorname{SAtyp}_{J}(V)$, is the union of all strongly J-atypical subvarieties of V.

Weak Modular Zilber-Pink with Derivatives

Definition

For a J-special variety $T \subseteq \mathbb{C}^{3 n}$ and an algebraic variety $V \subseteq \mathbb{C}^{3 n}$ an atypical component X of an intersection $V \cap T$ in $\mathbb{C}^{3 n}$ is a strongly J-atypical subvariety of V if for every irreducible analytic component Y of $X \cap J\left(\mathbb{H}^{n}\right)$, no coordinate is constant on Y. The strongly J-atypical set of V, denoted $\operatorname{SAtyp}_{J}(V)$, is the union of all strongly J-atypical subvarieties of V.

Theorem (A., 2019)

For every algebraic variety $V \subseteq \mathbb{C}^{3 n}$ there is a finite collection Σ of proper \mathbb{H}-special subvarieties of \mathbb{H}^{n} such that

$$
\operatorname{SAtyp}_{J}(V) \cap J\left(\mathbb{H}^{n}\right) \subseteq \bigcup_{\substack{U \in \Sigma \\ \bar{\gamma} \in \mathrm{SL}_{2}(\mathbb{Z})^{n}}}\langle\langle\bar{\gamma} U\rangle\rangle
$$

Sketch of Proof - Complex Ax-Schanuel

- Let $\mathrm{pr}_{j}: \mathbb{C}^{3 n} \rightarrow \mathbb{C}^{n}$ be the projection onto the j-coordinates, i.e. the first n coordinates. By abuse of notation, we also let $\mathrm{pr}_{j}: \mathbb{C}^{4 n} \rightarrow \mathbb{C}^{n}$ be the projection onto the second n coordinates.

Sketch of Proof - Complex Ax-Schanuel

- Let $\mathrm{pr}_{j}: \mathbb{C}^{3 n} \rightarrow \mathbb{C}^{n}$ be the projection onto the j-coordinates, i.e. the first n coordinates. By abuse of notation, we also let $\mathrm{pr}_{j}: \mathbb{C}^{4 n} \rightarrow \mathbb{C}^{n}$ be the projection onto the second n coordinates.
- Let $\Gamma \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of $J: \mathbb{H}^{n} \rightarrow \mathbb{C}^{3 n}$.

Sketch of Proof - Complex Ax-Schanuel

- Let $\mathrm{pr}_{j}: \mathbb{C}^{3 n} \rightarrow \mathbb{C}^{n}$ be the projection onto the j-coordinates, i.e. the first n coordinates. By abuse of notation, we also let $\mathrm{pr}_{j}: \mathbb{C}^{4 n} \rightarrow \mathbb{C}^{n}$ be the projection onto the second n coordinates.
- Let $\Gamma \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of $J: \mathbb{H}^{n} \rightarrow \mathbb{C}^{3 n}$.

Theorem (Complex Ax-Schanuel for j, Pila-Tsimerman 2015)

Let $V \subseteq \mathbb{C}^{4 n}$ be an algebraic variety and let A be an analytic component of the intersection $V \cap \Gamma$. If $\operatorname{dim} A>\operatorname{dim} V-3 n$ and no coordinate is constant on $\mathrm{pr}_{j} A$ then it is contained in a proper j-special subvariety of \mathbb{C}^{n}.

Sketch of Proof - Complex Ax-Schanuel

- Let $\mathrm{pr}_{j}: \mathbb{C}^{3 n} \rightarrow \mathbb{C}^{n}$ be the projection onto the j-coordinates, i.e. the first n coordinates. By abuse of notation, we also let $\mathrm{pr}_{j}: \mathbb{C}^{4 n} \rightarrow \mathbb{C}^{n}$ be the projection onto the second n coordinates.
- Let $\Gamma \subseteq \mathbb{H}^{n} \times \mathbb{C}^{3 n}$ be the graph of $J: \mathbb{H}^{n} \rightarrow \mathbb{C}^{3 n}$.

Theorem (Complex Ax-Schanuel for j, Pila-Tsimerman 2015)

Let $V \subseteq \mathbb{C}^{4 n}$ be an algebraic variety and let A be an analytic component of the intersection $V \cap \Gamma$. If $\operatorname{dim} A>\operatorname{dim} V-3 n$ and no coordinate is constant on $\mathrm{pr}_{j} A$ then it is contained in a proper j-special subvariety of \mathbb{C}^{n}.

Theorem (Uniform Ax-Schanuel)

Let $V_{\bar{c}} \subseteq \mathbb{C}^{4 n}$ be a parametric family of algebraic varieties. Then there is a finite collection Σ of proper j-special subvarieties of \mathbb{C}^{n} such that for every $\bar{c} \subseteq \mathbb{C}$, if $A_{\bar{c}}$ is an analytic component of the intersection $V_{\bar{c}} \cap \Gamma$ with $\operatorname{dim} A_{\bar{c}}>\operatorname{dim} V_{\bar{c}}-3 n$, and no coordinate is constant on $\mathrm{pr}_{j} A_{\bar{c}}$, then $\mathrm{pr}_{j} A_{\bar{c}}$ is contained in some $T^{\prime} \in \Sigma$.

Sketch of Proof - Dimension of Intersection

Theorem (Dimension of Intersection)

Let $A, B \subseteq M$ be analytic varieties where M is smooth. Then for any component X of $A \cap B$ we have

$$
\operatorname{dim} X \geq \operatorname{dim} A+\operatorname{dim} B-\operatorname{dim} M
$$

Sketch of Proof - Dimension of Intersection

Theorem (Dimension of Intersection)

Let $A, B \subseteq M$ be analytic varieties where M is smooth. Then for any component X of $A \cap B$ we have

$$
\operatorname{dim} X \geq \operatorname{dim} A+\operatorname{dim} B-\operatorname{dim} M
$$

Corollary

Let $A, B \subseteq M$ be irreducible analytic varieties (M may not be smooth). If X (a component of $A \cap B$) contains a non-singular point of M then

$$
\operatorname{dim} X \geq \operatorname{dim} A+\operatorname{dim} B-\operatorname{dim} M
$$

Sketch of proof - Non-singular points

Lemma

Assume $T \subseteq \mathbb{C}^{3 n}$ is J-special and Y is a complex analytically irreducible subset of $T \cap J\left(\mathbb{H}^{n}\right)$ without constant coordinates. Then Y contains a non-singular point of T.

Sketch of proof - Non-singular points

Lemma

Assume $T \subseteq \mathbb{C}^{3 n}$ is J-special and Y is a complex analytically irreducible subset of $T \cap J\left(\mathbb{H}^{n}\right)$ without constant coordinates. Then Y contains a non-singular point of T.

Proof.

- Assume T consists of a single j-block, i.e. all j-coordinates of T are pairwise modularly related.
- Let $T_{s} \subsetneq T$ be the set of singular points of T.
- If $Z:=J^{-1}\left(T_{s}\right)$ is uncountable then it has a limit point, and we can deduce that $z, j(z), j^{\prime}(z), j^{\prime \prime}(z)$ are algebraically dependent.
Contradiction.
- Hence $T_{s} \cap J\left(\mathbb{H}^{n}\right)$ is countable and $Y \nsubseteq T_{s}$.

Theorem recalled

Definition

For a J-special variety $T \subseteq \mathbb{C}^{3 n}$ and an algebraic variety $V \subseteq \mathbb{C}^{3 n}$ an atypical component X of an intersection $V \cap T$ in $\mathbb{C}^{3 n}$ is a strongly J-atypical subvariety of V if for every irreducible analytic component Y of $X \cap J\left(\mathbb{H}^{n}\right)$, no coordinate is constant on Y. The strongly J-atypical set of V, denoted $\operatorname{SAtyp}_{J}(V)$, is the union of all strongly J-atypical subvarieties of V.

Theorem

For every algebraic variety $V \subseteq \mathbb{C}^{3 n}$ there is a finite collection Σ of proper \mathbb{H}-special subvarieties of \mathbb{H}^{n} such that

$$
\operatorname{SAtyp}_{J}(V) \cap J\left(\mathbb{H}^{n}\right) \subseteq \bigcup_{\substack{U \in \Sigma \\ \bar{\gamma} \in \mathrm{SL}_{2}(\mathbb{Z})^{n}}}\langle\langle\bar{\gamma} U\rangle\rangle
$$

Sketch of Proof

- Let $T=\langle\langle U\rangle\rangle \subseteq \mathbb{C}^{3 n}$ be a J-special variety and $X \subseteq V \cap T$ be a strongly atypical component, $\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} T-3 n$.
- Assume $A \subseteq X \cap J\left(\mathbb{H}^{n}\right)$ is an analytic component such that no coordinate is constant on A. Then $A \subseteq J(U) \subseteq T$, and A is an analytic component of $X \cap J(U)$.
- By Lemma, A contains a non-singular point of T. Hence,

$$
\begin{gathered}
\operatorname{dim} A \geq \operatorname{dim} X+\operatorname{dim} J(U)-\operatorname{dim} T> \\
\operatorname{dim} V+\operatorname{dim} T-3 n+\operatorname{dim} J(U)-\operatorname{dim} T=\operatorname{dim} V+\operatorname{dim} U-3 n .
\end{gathered}
$$

- This implies

$$
\operatorname{dim}((U \times A) \cap \Gamma)=\operatorname{dim} A>\operatorname{dim}(U \times V)-3 n
$$

Now the desired result follows from Uniform Ax-Schanuel applied to the parametric family of algebraic varieties $W_{\bar{c}} \times V$ where $W_{\bar{c}}$ varies over the parametric family of all \mathbb{C}-geodesic varieties.

Differential equation

- The j-function satisfies an order 3 algebraic differential equation over \mathbb{Q}. Namely, $\Psi_{j}\left(j, j^{\prime}, j^{\prime \prime}, j^{\prime \prime \prime}\right)=0$ where

$$
\Psi_{j}\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=\frac{y_{3}}{y_{1}}-\frac{3}{2}\left(\frac{y_{2}}{y_{1}}\right)^{2}+\frac{y_{0}^{2}-1968 y_{0}+2654208}{2 y_{0}^{2}\left(y_{0}-1728\right)^{2}} \cdot y_{1}^{2}
$$

Differential equation

- The j-function satisfies an order 3 algebraic differential equation over \mathbb{Q}. Namely, $\Psi_{j}\left(j, j^{\prime}, j^{\prime \prime}, j^{\prime \prime \prime}\right)=0$ where

$$
\Psi_{j}\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=\frac{y_{3}}{y_{1}}-\frac{3}{2}\left(\frac{y_{2}}{y_{1}}\right)^{2}+\frac{y_{0}^{2}-1968 y_{0}+2654208}{2 y_{0}^{2}\left(y_{0}-1728\right)^{2}} \cdot y_{1}^{2}
$$

- Thus

$$
\Psi_{j}\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=S y+R(y)\left(y^{\prime}\right)^{2}
$$

where S denotes the Schwarzian derivative defined by

$$
S y=\frac{y^{\prime \prime \prime}}{y^{\prime}}-\frac{3}{2}\left(\frac{y^{\prime \prime}}{y^{\prime}}\right)^{2} \text { and } R(y)=\frac{y^{2}-1968 y+2654208}{2 y^{2}(y-1728)^{2}}
$$

Differential equation

- The j-function satisfies an order 3 algebraic differential equation over \mathbb{Q}. Namely, $\Psi_{j}\left(j, j^{\prime}, j^{\prime \prime}, j^{\prime \prime \prime}\right)=0$ where

$$
\Psi_{j}\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=\frac{y_{3}}{y_{1}}-\frac{3}{2}\left(\frac{y_{2}}{y_{1}}\right)^{2}+\frac{y_{0}^{2}-1968 y_{0}+2654208}{2 y_{0}^{2}\left(y_{0}-1728\right)^{2}} \cdot y_{1}^{2}
$$

- Thus

$$
\Psi_{j}\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=S y+R(y)\left(y^{\prime}\right)^{2}
$$

where S denotes the Schwarzian derivative defined by

$$
S y=\frac{y^{\prime \prime \prime}}{y^{\prime}}-\frac{3}{2}\left(\frac{y^{\prime \prime}}{y^{\prime}}\right)^{2} \text { and } R(y)=\frac{y^{2}-1968 y+2654208}{2 y^{2}(y-1728)^{2}} .
$$

- All functions $j(g z)$ with $g \in \mathrm{SL}_{2}(\mathbb{C})$ satisfy the differential equation $\Psi_{j}\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=0$ and in fact all solutions are of that form.

Differential equation

Let $(K ;+, \cdot, D)$ be a differential field with field of constants $C:=\operatorname{ker} D$.

- Let $E_{(z, J)}\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ denote the formula

$$
\exists y^{\prime \prime \prime}\left(\Psi_{j}\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=0 \wedge D x=\frac{D y}{y^{\prime}}=\frac{D y^{\prime}}{y^{\prime \prime}}=\frac{D y^{\prime \prime}}{y^{\prime \prime \prime}}\right)
$$

By abuse of notation we will also let $E_{(z, J)}(K)$ denote the set of all tuples $\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right) \in K^{4 n}$ with $\left(x_{i}, y_{i}, y_{i}^{\prime}, y_{i}^{\prime \prime}\right) \in E_{(z, J)}(K)$. The set $E_{(z, J)}^{\times}(K)$ consists of all $E_{(z, J)}(K)$-points that do not have any constant coordinates.

Differential equation

Let $(K ;+, \cdot, D)$ be a differential field with field of constants $C:=\operatorname{ker} D$.

- Let $E_{(z, J)}\left(x, y, y^{\prime}, y^{\prime \prime}\right)$ denote the formula

$$
\exists y^{\prime \prime \prime}\left(\Psi_{j}\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=0 \wedge D x=\frac{D y}{y^{\prime}}=\frac{D y^{\prime}}{y^{\prime \prime}}=\frac{D y^{\prime \prime}}{y^{\prime \prime \prime}}\right)
$$

By abuse of notation we will also let $E_{(z, J)}(K)$ denote the set of all tuples $\left(\bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right) \in K^{4 n}$ with $\left(x_{i}, y_{i}, y_{i}^{\prime}, y_{i}^{\prime \prime}\right) \in E_{(z, J)}(K)$. The set $E_{(z, J)}^{\times}(K)$ consists of all $E_{(z, J)}(K)$-points that do not have any constant coordinates.

- $E_{J}\left(y, y^{\prime}, y^{\prime \prime}\right)$ is the projection of $E_{(z, J)}$ onto the last three coordinates, i.e. $\exists x E_{(z, J)}\left(x, y, y^{\prime}, y^{\prime \prime}\right)$. Equivalently, E_{J} is given by

$$
\exists y^{\prime \prime \prime}\left(\Psi_{j}\left(y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}\right)=0 \wedge \frac{D y}{y^{\prime}}=\frac{D y^{\prime}}{y^{\prime \prime}}=\frac{D y^{\prime \prime}}{y^{\prime \prime \prime}}\right)
$$

As above, $E_{J}(K)$ also denotes the set of all tuples $\left(\bar{y}, \bar{y}^{\prime}, \bar{y}^{\prime \prime}\right) \in K^{3 n}$ such that $\left(y_{i}, y_{i}^{\prime}, y_{i}^{\prime \prime}\right) \in E_{J}(K)$ for all i, and $E_{J}^{\times}(K)$ is the set of all points in $E_{J}(K)$ with no constant coordinates.

Functional equations

Let $E_{(z, j)}(x, y)$ be the projection $\exists y^{\prime}, y^{\prime \prime} E_{(z, J)}\left(x, y, y^{\prime}, y^{\prime \prime}\right)$. Define $E_{(z, j)}^{\times}$as above.

- If $\left(z_{i}, j_{i}\right) \in E_{(z, j)}^{\times}(K), i=1,2$, and $\Phi_{N}\left(j_{1}, j_{2}\right)=0$ for some modular polynomial Φ_{N} then $z_{2}=g z_{1}$ for some $g \in \operatorname{SL}_{2}(C)$.
- If $\left(z_{1}, j_{1}\right) \in E_{(z, j)}^{\times}(K)$ and $\left(z_{2}, j_{2}\right) \in K^{2}$ such that $\Phi_{N}\left(j_{1}, j_{2}\right)=0$ for some Φ_{N} and $z_{2}=g z_{1}$ for some $g \in \operatorname{SL}_{2}(C)$ then $\left(z_{2}, j_{2}\right) \in E_{(z, j)}^{\times}(K)$.

Ax-Schanuel for j

Theorem (Pila-Tsimerman, 2015)

Let $(K ; D)$ be a differential field with field of constants C. Assume $\left(z_{i}, \dot{j}_{i}, j_{i}^{\prime}, j_{i}^{\prime \prime}\right) \in E_{(z, J)}^{\times}(K), i=1, \ldots, n$. If the j_{i} 's are pairwise modularly independent then

$$
\operatorname{td}_{C} C\left(\bar{z}, \bar{j}, \bar{j}^{\prime}, \bar{j}^{\prime \prime}\right) \geq 3 n+1
$$

D-special varieties

Let C be an algebraically closed field. Define D as the zero derivation on C and extend $(C ;+, \cdot, D)$ to a differentially closed field $(K ;+, \cdot, D)$.

- A C-geodesic variety $U \subseteq C^{n}$ (with coordinates \bar{x}) is an irreducible component of a variety defined by equations of the form $x_{i}=g_{i, k} x_{k}$ for some $g_{i, k} \in \mathrm{SL}_{2}(C)$. If $S \subseteq C^{n}$ (with coordinates \bar{y}) is a j-special variety, then U is said to be a C-geodesic variety associated with S if for any $1 \leq i, k \leq n$ we have $\Phi_{N}\left(y_{i}, y_{k}\right)=0$ on S for some N if and only if $x_{i}=g_{i, k} x_{k}$ on U for some $g_{i, k} \in \mathrm{SL}_{2}(C)$.

D-special varieties

Let C be an algebraically closed field. Define D as the zero derivation on C and extend $(C ;+, \cdot, D)$ to a differentially closed field $(K ;+, \cdot, D)$.

- A C-geodesic variety $U \subseteq C^{n}$ (with coordinates \bar{x}) is an irreducible component of a variety defined by equations of the form $x_{i}=g_{i, k} x_{k}$ for some $g_{i, k} \in \mathrm{SL}_{2}(C)$. If $S \subseteq C^{n}$ (with coordinates \bar{y}) is a j-special variety, then U is said to be a C-geodesic variety associated with S if for any $1 \leq i, k \leq n$ we have $\Phi_{N}\left(y_{i}, y_{k}\right)=0$ on S for some N if and only if $x_{i}=g_{i, k} x_{k}$ on U for some $g_{i, k} \in \mathrm{SL}_{2}(C)$.
- Let $T \subseteq C^{n}$ be a j-special variety and $U \subseteq C^{n}$ be a C-geodesic variety associated with T. Denote by $\langle\langle U, T\rangle\rangle$ the Zariski closure over C of the projection of the set

$$
E_{(z, J)}^{\times}(K) \cap\left(U(K) \times T(K) \times K^{2}\right)
$$

onto the last $3 n$ coordinates.

D-special varieties (continued)

- A D-special variety is a variety $S:=\langle\langle U, T\rangle\rangle$ for some T and U as above. In this case S is said to be a D-special variety associated with T and U. We will also say that T (or U) is a j-special (respectively, geodesic) variety associated with S. A D-special variety associated with T is one associated with T and U for some C-geodesic variety U associated with T.
- $S \sim T$ means that S is a D-special variety associated with T. For a set Σ of j-special varieties $S \sim \Sigma$ means that $S \sim T$ for some $T \in \Sigma$.
- \mathcal{S}_{D} is the collection of all D-special varieties.
- D-special varieties are irreducible.
- Strongly J-special varieties are D-special.

Differential Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq C^{3 n}$ we let the D-atypical set of V, denoted $\operatorname{Atyp}_{\mathrm{D}}(V)$, be the union of all D-atypical subvarieties of V, that is, atypical components of intersections $V \cap T$ where $T \subseteq C^{3 n}$ is D-special.

Differential Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq C^{3 n}$ we let the D-atypical set of V, denoted $\operatorname{Atyp}_{D}(V)$, be the union of all D-atypical subvarieties of V, that is, atypical components of intersections $V \cap T$ where $T \subseteq C^{3 n}$ is D-special.

Theorem (A., 2019)

Let $(K ;+, \cdot, D)$ be a differential field with an algebraically closed field of constants C. Given an algebraic variety $V \subseteq C^{3 n}$, there is a finite collection Σ of proper j-special subvarieties of C^{n} such that

$$
\operatorname{Atyp}_{\mathrm{D}}(V)(K) \cap E_{J}^{\times}(K) \subseteq \bigcup_{\substack{P \sim \Sigma \\ P \in \mathcal{S}_{\mathrm{D}}}} P
$$

Pila and Scanlon proved some differential Zilber-Pink statements, but they did not consider derivatives.

Sketch of proof

- Use Seidenberg's embedding theorem. All solutions to the differential equation of j are of the form $j_{g}:=j(g z)$ with $g \in \mathrm{GL}_{2}(\mathbb{C})$. Note that j_{g} is defined on $\mathbb{H}^{g}:=g^{-1} \mathbb{H}$.

Sketch of proof

- Use Seidenberg's embedding theorem. All solutions to the differential equation of j are of the form $j_{g}:=j(g z)$ with $g \in \mathrm{GL}_{2}(\mathbb{C})$. Note that j_{g} is defined on $\mathbb{H}^{g}:=g^{-1} \mathbb{H}$.
- For a tuple $\bar{g} \in \mathrm{GL}_{2}(\mathbb{C})^{n}$ define functions $j_{\bar{g}}$ and $J_{\bar{g}}$, defined on $\mathbb{H}^{\bar{g}}:=\mathbb{H}^{g_{1}} \times \cdots \times \mathbb{H}^{g_{n}}$.

Sketch of proof

- Use Seidenberg's embedding theorem. All solutions to the differential equation of j are of the form $j_{g}:=j(g z)$ with $g \in \mathrm{GL}_{2}(\mathbb{C})$. Note that j_{g} is defined on $\mathbb{H}^{g}:=g^{-1} \mathbb{H}$.
- For a tuple $\bar{g} \in \mathrm{GL}_{2}(\mathbb{C})^{n}$ define functions $j_{\bar{g}}$ and $J_{\bar{g}}$, defined on $\mathbb{H}^{\bar{g}}:=\mathbb{H}^{g_{1}} \times \cdots \times \mathbb{H}^{g_{n}}$.
- Define $\mathbb{H}^{\bar{g}}$-special and $J_{\bar{g}}$-special varieties.

Sketch of proof

- Use Seidenberg's embedding theorem. All solutions to the differential equation of j are of the form $j_{g}:=j(g z)$ with $g \in \mathrm{GL}_{2}(\mathbb{C})$. Note that j_{g} is defined on $\mathbb{H}^{g}:=g^{-1} \mathbb{H}$.
- For a tuple $\bar{g} \in \mathrm{GL}_{2}(\mathbb{C})^{n}$ define functions $j_{\bar{g}}$ and $J_{\bar{g}}$, defined on $\mathbb{H}^{\bar{g}}:=\mathbb{H}^{g_{1}} \times \cdots \times \mathbb{H}^{g_{n}}$.
- Define $\mathbb{H}^{\bar{g}}$-special and $J_{\bar{g}}$-special varieties.
- Show that a subvariety of $\mathbb{C}^{3 n}$ is D-special if and only if it is strongly $J_{\bar{g}}$-special for some $\bar{g} \in G L_{2}(\mathbb{C})^{n}$.

Sketch of proof

- Use Seidenberg's embedding theorem. All solutions to the differential equation of j are of the form $j_{g}:=j(g z)$ with $g \in \mathrm{GL}_{2}(\mathbb{C})$. Note that j_{g} is defined on $\mathbb{H}^{g}:=g^{-1} \mathbb{H}$.
- For a tuple $\bar{g} \in \mathrm{GL}_{2}(\mathbb{C})^{n}$ define functions $j_{\bar{g}}$ and $J_{\bar{g}}$, defined on $\mathbb{H}^{\bar{g}}:=\mathbb{H}^{g_{1}} \times \cdots \times \mathbb{H}^{g_{n}}$.
- Define $\mathbb{H}^{\bar{g}}$-special and $J_{\bar{g}}$-special varieties.
- Show that a subvariety of $\mathbb{C}^{3 n}$ is D-special if and only if it is strongly $J_{\bar{g}}$-special for some $\bar{g} \in G L_{2}(\mathbb{C})^{n}$.
- Prove an analogue of Weak MZPD for $J_{\bar{g}}$-special varieties (uniform in $\bar{g})$.

Modular André-Oort with Derivatives

Conjecture (Pila)

For every algebraic variety $V \subsetneq \mathbb{C}^{3 n}$ there is a finite collection Σ of proper \mathbb{H}-special subvarieties of \mathbb{H}^{n} such that every J-special subvariety of V is contained in a J-special variety of the form $\langle\langle\bar{\gamma} U\rangle\rangle$ for some $\bar{\gamma} \in \mathrm{SL}_{2}(\mathbb{Z})^{n}$ and some $U \in \Sigma$.

Modular André-Oort with Derivatives

Conjecture (Pila)

For every algebraic variety $V \subsetneq \mathbb{C}^{3 n}$ there is a finite collection Σ of proper \mathbb{H}-special subvarieties of \mathbb{H}^{n} such that every J-special subvariety of V is contained in a J-special variety of the form $\langle\langle\bar{\gamma} U\rangle\rangle$ for some $\bar{\gamma} \in \mathrm{SL}_{2}(\mathbb{Z})^{n}$ and some $U \in \Sigma$.

Theorem (A., 2018)

Let C be an algebraically closed field of characteristic zero. Given an algebraic subvariety $V \subsetneq C^{3 n}$, there is a finite collection Σ of proper j-special subvarieties of C^{n} such that every D-special subvariety of V is contained in a D-special variety associated with some $T \in \Sigma$.

Note that Haden Spence also proved a weak version of MAOD which is different from the above theorem.

Thank you

