Functional Modular Zilber-Pink with Derivatives

Vahagn Aslanyan

University of East Anglia

Oxford 7 November 2019

Vahagn Aslanyan (UEA)

Oxford 7 November 2019 1 / 24

• Let $\mathbb{H} := \{z \in \mathbb{C} : Im(z) > 0\}$ be the complex upper half-plane.

3 🕨 🤅 3

- Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz=rac{az+b}{cz+d}.$$

- Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = rac{\mathsf{a}z+\mathsf{b}}{\mathsf{c}z+\mathsf{d}}.$$

 The function j : ℍ → ℂ is a modular function of weight 0 for the modular group SL₂(ℤ) defined and analytic on ℍ.

- Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = rac{az+b}{cz+d}.$$

 The function j : ℍ → ℂ is a modular function of weight 0 for the modular group SL₂(ℤ) defined and analytic on ℍ.

•
$$j(gz) = j(z)$$
 for all $g \in SL_2(\mathbb{Z})$.

- Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = rac{\mathsf{a}z+\mathsf{b}}{\mathsf{c}z+\mathsf{d}}.$$

• The function $j : \mathbb{H} \to \mathbb{C}$ is a modular function of weight 0 for the modular group $SL_2(\mathbb{Z})$ defined and analytic on \mathbb{H} .

•
$$j(gz) = j(z)$$
 for all $g \in SL_2(\mathbb{Z})$.

By means of j the quotient SL₂(Z) \ Ⅲ is identified with C (thus, j is a bijection from the fundamental domain of SL₂(Z) to C).

2/24

 For g ∈ GL⁺₂(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.

Modular polynomials

- For g ∈ GL₂⁺(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_N(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in GL_2^+(\mathbb{Q})$ with N = N(g), the function $\Phi_N(j(z), j(gz))$ is identically zero.

Modular polynomials

- For g ∈ GL₂⁺(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_N(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in GL_2^+(\mathbb{Q})$ with N = N(g), the function $\Phi_N(j(z), j(gz))$ is identically zero.
- Conversely, if Φ_N(j(x), j(y)) = 0 for some x, y ∈ ℍ then y = gx for some g ∈ GL₂⁺(ℚ) with N = N(g).

- For g ∈ GL₂⁺(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_N(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in GL_2^+(\mathbb{Q})$ with N = N(g), the function $\Phi_N(j(z), j(gz))$ is identically zero.
- Conversely, if $\Phi_N(j(x), j(y)) = 0$ for some $x, y \in \mathbb{H}$ then y = gx for some $g \in GL_2^+(\mathbb{Q})$ with N = N(g).
- The polynomials Φ_N are called *modular polynomials*.

- For g ∈ GL₂⁺(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_N(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in GL_2^+(\mathbb{Q})$ with N = N(g), the function $\Phi_N(j(z), j(gz))$ is identically zero.
- Conversely, if $\Phi_N(j(x), j(y)) = 0$ for some $x, y \in \mathbb{H}$ then y = gx for some $g \in GL_2^+(\mathbb{Q})$ with N = N(g).
- The polynomials Φ_N are called *modular polynomials*.
- $\Phi_1(X, Y) = X Y$ and all the other modular polynomials are symmetric.

- For $g \in GL_2^+(\mathbb{Q})$ we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_N(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in GL_2^+(\mathbb{Q})$ with N = N(g), the function $\Phi_N(j(z), j(gz))$ is identically zero.
- Conversely, if $\Phi_N(j(x), j(y)) = 0$ for some $x, y \in \mathbb{H}$ then y = gx for some $g \in GL_2^+(\mathbb{Q})$ with N = N(g).
- The polynomials Φ_N are called *modular polynomials*.
- $\Phi_1(X, Y) = X Y$ and all the other modular polynomials are symmetric.
- Two elements $w_1, w_2 \in \mathbb{C}$ are called *modularly independent* if they do not satisfy any modular relation $\Phi_N(w_1, w_2) = 0$.

- 3

A *j-special* subvariety of \mathbb{C}^n (coordinatised by \bar{y}) is an irreducible component of a variety defined by modular equations, i.e. equations of the form $\Phi_N(y_i, y_k) = 0$ for some $1 \le i, k \le n$ where $\Phi_N(X, Y)$ is a modular polynomial.

A *j-special* subvariety of \mathbb{C}^n (coordinatised by \bar{y}) is an irreducible component of a variety defined by modular equations, i.e. equations of the form $\Phi_N(y_i, y_k) = 0$ for some $1 \le i, k \le n$ where $\Phi_N(X, Y)$ is a modular polynomial.

Definition

A subvariety $U \subseteq \mathbb{H}^n$ (i.e. an intersection of \mathbb{H}^n with some algebraic variety) is called \mathbb{H} -special if it is defined by some equations of the form $z_i = g_{i,k}z_k, i \neq k$, with $g_{i,k} \in \operatorname{GL}_2^+(\mathbb{Q})$, and some equations of the form $z_i = \tau_i$ where $\tau_i \in \mathbb{H}$ is a quadratic number. For such a U the image j(U)is *j*-special (*j* is identified with its Cartesian powers).

イロト 不得下 イヨト イヨト 二日

For a variety $V \subseteq \mathbb{C}^n$ and a special variety $S \subseteq \mathbb{C}^n$, a component X of the intersection $V \cap S$ is an *atypical* subvariety of V if

 $\dim X > \dim V + \dim S - n.$

For a variety $V \subseteq \mathbb{C}^n$ and a special variety $S \subseteq \mathbb{C}^n$, a component X of the intersection $V \cap S$ is an *atypical* subvariety of V if

 $\dim X > \dim V + \dim S - n.$

Conjecture (Modular Zilber–Pink)

Every algebraic variety in \mathbb{C}^n contains only finitely many maximal atypical subvarieties.

An atypical subvariety X of $V \subseteq \mathbb{C}^n$ is *strongly atypical* if no coordinate is constant on X.

An atypical subvariety X of $V \subseteq \mathbb{C}^n$ is *strongly atypical* if no coordinate is constant on X.

Theorem (Pila-Tsimerman, 2015)

Every algebraic variety in \mathbb{C}^n contains only finitely many maximal strongly atypical subvarieties.

J-special varieties

Define a function $J:\mathbb{H} o \mathbb{C}^3$ by

 $J: z \mapsto (j(z), j'(z), j''(z)).$

We extend J to \mathbb{H}^n by defining

 $J: \bar{z} \mapsto (j(\bar{z}), j'(\bar{z}), j''(\bar{z}))$

where $j^{(k)}(\bar{z}) = (j^{(k)}(z_1), \dots, j^{(k)}(z_n))$ for k = 0, 1, 2. Note that j'''(z) is algebraic over j, j', j''.

J-special varieties

Define a function $J:\mathbb{H}
ightarrow \mathbb{C}^3$ by

 $J: z \mapsto (j(z), j'(z), j''(z)).$

We extend J to \mathbb{H}^n by defining

 $J:\bar{z}\mapsto (j(\bar{z}),j'(\bar{z}),j''(\bar{z}))$

where $j^{(k)}(\bar{z}) = (j^{(k)}(z_1), \dots, j^{(k)}(z_n))$ for k = 0, 1, 2. Note that j'''(z) is algebraic over j, j', j''.

Definition (Pila)

Let $U \subseteq \mathbb{H}^n$ be \mathbb{H} -special. We denote by $\langle \langle U \rangle \rangle \subseteq \mathbb{C}^{3n}$ the Zariski closure of J(U) over \mathbb{Q}^{alg} . These are the *J*-special varieties in \mathbb{C}^{3n} .

Remark

J-special varieties are irreducible. Strongly J-special varieties (no constant coordinates) are equal to the product of j-blocks (where all j-coordinates are pairwise modularly related) each of which has dimension 3 or 4.

Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{3n}$ we let the *J*-atypical set of *V*, denoted $\operatorname{Atyp}_J(V)$, be the union of all atypical components of intersections $V \cap T$ in \mathbb{C}^{3n} where $T \subseteq \mathbb{C}^{3n}$ is a *J*-special variety.

Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{3n}$ we let the *J*-atypical set of *V*, denoted Atyp_J(*V*), be the union of all atypical components of intersections $V \cap T$ in \mathbb{C}^{3n} where $T \subseteq \mathbb{C}^{3n}$ is a *J*-special variety.

Conjecture (Pila, "MZPD")

For every algebraic variety $V \subseteq \mathbb{C}^{3n}$ there is a finite collection Σ of proper \mathbb{H} -special subvarieties of \mathbb{H}^n such that

$$\operatorname{Atyp}_{J}(V) \cap J(\mathbb{H}^{n}) \subseteq \bigcup_{\substack{U \in \Sigma \\ \bar{\gamma} \in \operatorname{SL}_{2}(\mathbb{Z})^{n}}} \langle \langle \bar{\gamma} U \rangle \rangle.$$

Modular Zilber-Pink with Derivatives

Definition

For a variety $V \subseteq \mathbb{C}^{3n}$ we let the *J*-atypical set of *V*, denoted Atyp_J(*V*), be the union of all atypical components of intersections $V \cap T$ in \mathbb{C}^{3n} where $T \subseteq \mathbb{C}^{3n}$ is a *J*-special variety.

Conjecture (Pila, "MZPD")

For every algebraic variety $V \subseteq \mathbb{C}^{3n}$ there is a finite collection Σ of proper \mathbb{H} -special subvarieties of \mathbb{H}^n such that

$$\operatorname{Atyp}_{J}(V) \cap J(\mathbb{H}^{n}) \subseteq \bigcup_{\substack{U \in \Sigma \\ \bar{\gamma} \in \operatorname{SL}_{2}(\mathbb{Z})^{n}}} \langle \langle \bar{\gamma} U \rangle \rangle.$$

Remark

Here we may need infinitely many J-special subvarieties to cover the atypical set of V.

Vahagn Aslanyan (UEA)

Weak Modular Zilber-Pink with Derivatives

Definition

For a *J*-special variety $T \subseteq \mathbb{C}^{3n}$ and an algebraic variety $V \subseteq \mathbb{C}^{3n}$ an atypical component X of an intersection $V \cap T$ in \mathbb{C}^{3n} is a *strongly J*-atypical subvariety of V if for every irreducible analytic component Y of $X \cap J(\mathbb{H}^n)$, no coordinate is constant on Y. The *strongly J*-atypical subvarieties of V, denoted SAtyp_J(V), is the union of all strongly *J*-atypical subvarieties of V.

For a *J*-special variety $T \subseteq \mathbb{C}^{3n}$ and an algebraic variety $V \subseteq \mathbb{C}^{3n}$ an atypical component X of an intersection $V \cap T$ in \mathbb{C}^{3n} is a *strongly J*-atypical subvariety of V if for every irreducible analytic component Y of $X \cap J(\mathbb{H}^n)$, no coordinate is constant on Y. The *strongly J*-atypical set of V, denoted SAtyp_J(V), is the union of all strongly *J*-atypical subvarieties of V.

Theorem (A., 2019)

For every algebraic variety $V \subseteq \mathbb{C}^{3n}$ there is a finite collection Σ of proper \mathbb{H} -special subvarieties of \mathbb{H}^n such that

$$\mathsf{SAtyp}_J(V) \cap J(\mathbb{H}^n) \subseteq \bigcup_{\substack{U \in \Sigma\\ \bar{\gamma} \in \mathsf{SL}_2(\mathbb{Z})^n}} \langle \langle \bar{\gamma} U \rangle \rangle.$$

• Let $\operatorname{pr}_j : \mathbb{C}^{3n} \to \mathbb{C}^n$ be the projection onto the *j*-coordinates, i.e. the first *n* coordinates. By abuse of notation, we also let $\operatorname{pr}_j : \mathbb{C}^{4n} \to \mathbb{C}^n$ be the projection onto the second *n* coordinates.

- Let $\operatorname{pr}_j : \mathbb{C}^{3n} \to \mathbb{C}^n$ be the projection onto the *j*-coordinates, i.e. the first *n* coordinates. By abuse of notation, we also let $\operatorname{pr}_j : \mathbb{C}^{4n} \to \mathbb{C}^n$ be the projection onto the second *n* coordinates.
- Let $\Gamma \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of $J : \mathbb{H}^n \to \mathbb{C}^{3n}$.

- Let $\operatorname{pr}_j : \mathbb{C}^{3n} \to \mathbb{C}^n$ be the projection onto the *j*-coordinates, i.e. the first *n* coordinates. By abuse of notation, we also let $\operatorname{pr}_j : \mathbb{C}^{4n} \to \mathbb{C}^n$ be the projection onto the second *n* coordinates.
- Let $\Gamma \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of $J : \mathbb{H}^n \to \mathbb{C}^{3n}$.

Theorem (Complex Ax-Schanuel for *j*, Pila-Tsimerman 2015)

Let $V \subseteq \mathbb{C}^{4n}$ be an algebraic variety and let A be an analytic component of the intersection $V \cap \Gamma$. If dim $A > \dim V - 3n$ and no coordinate is constant on $\operatorname{pr}_j A$ then it is contained in a proper *j*-special subvariety of \mathbb{C}^n .

- Let $\operatorname{pr}_j : \mathbb{C}^{3n} \to \mathbb{C}^n$ be the projection onto the *j*-coordinates, i.e. the first *n* coordinates. By abuse of notation, we also let $\operatorname{pr}_j : \mathbb{C}^{4n} \to \mathbb{C}^n$ be the projection onto the second *n* coordinates.
- Let $\Gamma \subseteq \mathbb{H}^n \times \mathbb{C}^{3n}$ be the graph of $J : \mathbb{H}^n \to \mathbb{C}^{3n}$.

Theorem (Complex Ax-Schanuel for *j*, Pila-Tsimerman 2015)

Let $V \subseteq \mathbb{C}^{4n}$ be an algebraic variety and let A be an analytic component of the intersection $V \cap \Gamma$. If dim $A > \dim V - 3n$ and no coordinate is constant on $\operatorname{pr}_j A$ then it is contained in a proper *j*-special subvariety of \mathbb{C}^n .

Theorem (Uniform Ax-Schanuel)

Let $V_{\bar{c}} \subseteq \mathbb{C}^{4n}$ be a parametric family of algebraic varieties. Then there is a finite collection Σ of proper *j*-special subvarieties of \mathbb{C}^n such that for every $\bar{c} \subseteq \mathbb{C}$, if $A_{\bar{c}}$ is an analytic component of the intersection $V_{\bar{c}} \cap \Gamma$ with dim $A_{\bar{c}} > \dim V_{\bar{c}} - 3n$, and no coordinate is constant on $\operatorname{pr}_j A_{\bar{c}}$, then $\operatorname{pr}_j A_{\bar{c}}$ is contained in some $T' \in \Sigma$.

Theorem (Dimension of Intersection)

Let $A, B \subseteq M$ be analytic varieties where M is smooth. Then for any component X of $A \cap B$ we have

 $\dim X \geq \dim A + \dim B - \dim M.$

Theorem (Dimension of Intersection)

Let $A, B \subseteq M$ be analytic varieties where M is smooth. Then for any component X of $A \cap B$ we have

 $\dim X \geq \dim A + \dim B - \dim M.$

Corollary

Let $A, B \subseteq M$ be irreducible analytic varieties (M may not be smooth). If X (a component of $A \cap B$) contains a non-singular point of M then

 $\dim X \geq \dim A + \dim B - \dim M.$

Lemma

Assume $T \subseteq \mathbb{C}^{3n}$ is J-special and Y is a complex analytically irreducible subset of $T \cap J(\mathbb{H}^n)$ without constant coordinates. Then Y contains a non-singular point of T.

Lemma

Assume $T \subseteq \mathbb{C}^{3n}$ is J-special and Y is a complex analytically irreducible subset of $T \cap J(\mathbb{H}^n)$ without constant coordinates. Then Y contains a non-singular point of T.

Proof.

- Assume *T* consists of a single *j*-block, i.e. all *j*-coordinates of *T* are pairwise modularly related.
- Let $T_s \subsetneq T$ be the set of singular points of T.
- If $Z := J^{-1}(T_s)$ is uncountable then it has a limit point, and we can deduce that z, j(z), j'(z), j''(z) are algebraically dependent. Contradiction.
- Hence $T_s \cap J(\mathbb{H}^n)$ is countable and $Y \nsubseteq T_s$.

12/24

For a *J*-special variety $T \subseteq \mathbb{C}^{3n}$ and an algebraic variety $V \subseteq \mathbb{C}^{3n}$ an atypical component X of an intersection $V \cap T$ in \mathbb{C}^{3n} is a *strongly J*-atypical subvariety of V if for every irreducible analytic component Y of $X \cap J(\mathbb{H}^n)$, no coordinate is constant on Y. The *strongly J*-atypical set of V, denoted SAtyp_J(V), is the union of all strongly *J*-atypical subvarieties of V.

Theorem

For every algebraic variety $V \subseteq \mathbb{C}^{3n}$ there is a finite collection Σ of proper \mathbb{H} -special subvarieties of \mathbb{H}^n such that

$$\mathsf{SAtyp}_J(V) \cap J(\mathbb{H}^n) \subseteq \bigcup_{\substack{U \in \Sigma\\ \bar{\gamma} \in \mathsf{SL}_2(\mathbb{Z})^n}} \langle \langle \bar{\gamma} U \rangle \rangle.$$

Sketch of Proof

- Let $T = \langle \langle U \rangle \rangle \subseteq \mathbb{C}^{3n}$ be a *J*-special variety and $X \subseteq V \cap T$ be a strongly atypical component, dim $X > \dim V + \dim T 3n$.
- Assume A ⊆ X ∩ J(ℍⁿ) is an analytic component such that no coordinate is constant on A. Then A ⊆ J(U) ⊆ T, and A is an analytic component of X ∩ J(U).
- By Lemma, A contains a non-singular point of T. Hence,

 $\dim A \ge \dim X + \dim J(U) - \dim T >$ $\dim V + \dim T - 3n + \dim J(U) - \dim T = \dim V + \dim U - 3n.$

This implies

$$\dim((U \times A) \cap \Gamma) = \dim A > \dim(U \times V) - 3n.$$

Now the desired result follows from Uniform Ax-Schanuel applied to the parametric family of algebraic varieties $W_{\bar{c}} \times V$ where $W_{\bar{c}}$ varies over the parametric family of all \mathbb{C} -geodesic varieties.

• The *j*-function satisfies an order 3 algebraic differential equation over \mathbb{Q} . Namely, $\Psi_j(j, j', j'', j''') = 0$ where

$$\Psi_j(y_0, y_1, y_2, y_3) = \frac{y_3}{y_1} - \frac{3}{2} \left(\frac{y_2}{y_1}\right)^2 + \frac{y_0^2 - 1968y_0 + 2654208}{2y_0^2(y_0 - 1728)^2} \cdot y_1^2.$$

• The *j*-function satisfies an order 3 algebraic differential equation over \mathbb{Q} . Namely, $\Psi_j(j, j', j'', j''') = 0$ where

$$\Psi_j(y_0, y_1, y_2, y_3) = \frac{y_3}{y_1} - \frac{3}{2} \left(\frac{y_2}{y_1}\right)^2 + \frac{y_0^2 - 1968y_0 + 2654208}{2y_0^2(y_0 - 1728)^2} \cdot y_1^2.$$

Thus

$$\Psi_j(y, y', y'', y''') = Sy + R(y)(y')^2,$$

where S denotes the Schwarzian derivative defined by $Sy = \frac{y'''}{y'} - \frac{3}{2} \left(\frac{y''}{y'}\right)^2 \text{ and } R(y) = \frac{y^2 - 1968y + 2654208}{2y^2(y - 1728)^2}.$

• The *j*-function satisfies an order 3 algebraic differential equation over \mathbb{Q} . Namely, $\Psi_j(j, j', j'', j''') = 0$ where

$$\Psi_j(y_0, y_1, y_2, y_3) = \frac{y_3}{y_1} - \frac{3}{2} \left(\frac{y_2}{y_1}\right)^2 + \frac{y_0^2 - 1968y_0 + 2654208}{2y_0^2(y_0 - 1728)^2} \cdot y_1^2.$$

Thus

$$\Psi_j(y, y', y'', y''') = Sy + R(y)(y')^2,$$

where S denotes the Schwarzian derivative defined by $Sy = \frac{y'''}{y'} - \frac{3}{2} \left(\frac{y''}{y'}\right)^2 \text{ and } R(y) = \frac{y^2 - 1968y + 2654208}{2y^2(y - 1728)^2}.$

• All functions j(gz) with $g \in SL_2(\mathbb{C})$ satisfy the differential equation $\Psi_j(y, y', y'', y''') = 0$ and in fact all solutions are of that form.

Let $(K; +, \cdot, D)$ be a differential field with field of constants $C := \ker D$. • Let $E_{(z,J)}(x, y, y', y'')$ denote the formula

$$\exists y^{\prime\prime\prime\prime} \ \left(\Psi_j \left(y, y^{\prime}, y^{\prime\prime}, y^{\prime\prime\prime} \right) = 0 \land Dx = \frac{Dy}{y^{\prime}} = \frac{Dy^{\prime}}{y^{\prime\prime\prime}} = \frac{Dy^{\prime\prime}}{y^{\prime\prime\prime}} \right).$$

By abuse of notation we will also let $E_{(z,J)}(K)$ denote the set of all tuples $(\bar{x}, \bar{y}, \bar{y}', \bar{y}'') \in K^{4n}$ with $(x_i, y_i, y_i', y_i'') \in E_{(z,J)}(K)$. The set $E_{(z,J)}^{\times}(K)$ consists of all $E_{(z,J)}(K)$ -points that do not have any constant coordinates.

Let $(K; +, \cdot, D)$ be a differential field with field of constants $C := \ker D$. • Let $E_{(z,J)}(x, y, y', y'')$ denote the formula

$$\exists y^{\prime\prime\prime\prime} \ \left(\Psi_j \left(y, y^{\prime}, y^{\prime\prime}, y^{\prime\prime\prime} \right) = 0 \land Dx = \frac{Dy}{y^{\prime}} = \frac{Dy^{\prime}}{y^{\prime\prime\prime}} = \frac{Dy^{\prime\prime}}{y^{\prime\prime\prime}} \right).$$

By abuse of notation we will also let $E_{(z,J)}(K)$ denote the set of all tuples $(\bar{x}, \bar{y}, \bar{y}', \bar{y}'') \in K^{4n}$ with $(x_i, y_i, y_i', y_i'') \in E_{(z,J)}(K)$. The set $E_{(z,J)}^{\times}(K)$ consists of all $E_{(z,J)}(K)$ -points that do not have any constant coordinates.

• $E_J(y, y', y'')$ is the projection of $E_{(z,J)}$ onto the last three coordinates, i.e. $\exists x E_{(z,J)}(x, y, y', y'')$. Equivalently, E_J is given by

$$\exists y^{\prime\prime\prime} \left(\Psi_j(y,y^\prime,y^{\prime\prime},y^{\prime\prime\prime}) = 0 \land \frac{Dy}{y^\prime} = \frac{Dy^\prime}{y^{\prime\prime}} = \frac{Dy^{\prime\prime}}{y^{\prime\prime\prime}} \right).$$

As above, $E_J(K)$ also denotes the set of all tuples $(\bar{y}, \bar{y}', \bar{y}'') \in K^{3n}$ such that $(y_i, y'_i, y''_i) \in E_J(K)$ for all *i*, and $E_J^{\times}(K)$ is the set of all points in $E_J(K)$ with no constant coordinates

Vahagn Aslanyan (UEA)

16/24

Let $E_{(z,j)}(x, y)$ be the projection $\exists y', y'' E_{(z,J)}(x, y, y', y'')$. Define $E_{(z,j)}^{\times}$ as above.

- If $(z_i, j_i) \in E_{(z,j)}^{\times}(K)$, i = 1, 2, and $\Phi_N(j_1, j_2) = 0$ for some modular polynomial Φ_N then $z_2 = gz_1$ for some $g \in SL_2(C)$.
- If $(z_1, j_1) \in E_{(z,j)}^{\times}(K)$ and $(z_2, j_2) \in K^2$ such that $\Phi_N(j_1, j_2) = 0$ for some Φ_N and $z_2 = gz_1$ for some $g \in SL_2(C)$ then $(z_2, j_2) \in E_{(z,j)}^{\times}(K)$.

Theorem (Pila-Tsimerman, 2015)

Let (K; D) be a differential field with field of constants C. Assume $(z_i, j_i, j'_i, j''_i) \in E^{\times}_{(z,J)}(K)$, i = 1, ..., n. If the j_i 's are pairwise modularly independent then

$$\operatorname{td}_{C}C\left(\bar{z},\bar{j},\bar{j}',\bar{j}''\right)\geq 3n+1.$$

D-special varieties

Let C be an algebraically closed field. Define D as the zero derivation on C and extend $(C; +, \cdot, D)$ to a differentially closed field $(K; +, \cdot, D)$.

• A *C*-geodesic variety $U \subseteq C^n$ (with coordinates \bar{x}) is an irreducible component of a variety defined by equations of the form $x_i = g_{i,k}x_k$ for some $g_{i,k} \in SL_2(C)$. If $S \subseteq C^n$ (with coordinates \bar{y}) is a *j*-special variety, then U is said to be a *C*-geodesic variety associated with *S* if for any $1 \leq i, k \leq n$ we have $\Phi_N(y_i, y_k) = 0$ on *S* for some *N* if and only if $x_i = g_{i,k}x_k$ on *U* for some $g_{i,k} \in SL_2(C)$.

D-special varieties

Let C be an algebraically closed field. Define D as the zero derivation on C and extend $(C; +, \cdot, D)$ to a differentially closed field $(K; +, \cdot, D)$.

- A *C*-geodesic variety $U \subseteq C^n$ (with coordinates \bar{x}) is an irreducible component of a variety defined by equations of the form $x_i = g_{i,k}x_k$ for some $g_{i,k} \in SL_2(C)$. If $S \subseteq C^n$ (with coordinates \bar{y}) is a *j*-special variety, then U is said to be a *C*-geodesic variety associated with S if for any $1 \leq i, k \leq n$ we have $\Phi_N(y_i, y_k) = 0$ on S for some N if and only if $x_i = g_{i,k}x_k$ on U for some $g_{i,k} \in SL_2(C)$.
- Let T ⊆ Cⁿ be a j-special variety and U ⊆ Cⁿ be a C-geodesic variety associated with T. Denote by ((U, T)) the Zariski closure over C of the projection of the set

$$E^{\times}_{(z,J)}(K) \cap (U(K) \times T(K) \times K^2)$$

onto the last 3n coordinates.

- A D-special variety is a variety S := ((U, T)) for some T and U as above. In this case S is said to be a D-special variety associated with T and U. We will also say that T (or U) is a j-special (respectively, geodesic) variety associated with S. A D-special variety associated with T is one associated with T and U for some C-geodesic variety U associated with T.
- S ~ T means that S is a D-special variety associated with T. For a set Σ of j-special varieties S ~ Σ means that S ~ T for some T ∈ Σ.
- S_D is the collection of all D-special varieties.
- D-special varieties are irreducible.
- Strongly J-special varieties are D-special.

For a variety $V \subseteq C^{3n}$ we let the D-*atypical set* of V, denoted $Atyp_D(V)$, be the union of all D-atypical subvarieties of V, that is, atypical components of intersections $V \cap T$ where $T \subseteq C^{3n}$ is D-special.

For a variety $V \subseteq C^{3n}$ we let the D-*atypical set* of V, denoted $Atyp_D(V)$, be the union of all D-atypical subvarieties of V, that is, atypical components of intersections $V \cap T$ where $T \subseteq C^{3n}$ is D-special.

Theorem (A., 2019)

Let $(K; +, \cdot, D)$ be a differential field with an algebraically closed field of constants C. Given an algebraic variety $V \subseteq C^{3n}$, there is a finite collection Σ of proper j-special subvarieties of C^n such that

$$\operatorname{Atyp}_{\mathsf{D}}(V)(K) \cap E_{J}^{\times}(K) \subseteq \bigcup_{\substack{P \sim \Sigma \\ P \in \mathcal{S}_{\mathsf{D}}}} P.$$

Pila and Scanlon proved some differential Zilber-Pink statements, but they did not consider derivatives.

Vahagn Aslanyan (UEA)

21/24

• Use Seidenberg's embedding theorem. All solutions to the differential equation of j are of the form $j_g := j(gz)$ with $g \in GL_2(\mathbb{C})$. Note that j_g is defined on $\mathbb{H}^g := g^{-1}\mathbb{H}$.

- Use Seidenberg's embedding theorem. All solutions to the differential equation of j are of the form $j_g := j(gz)$ with $g \in GL_2(\mathbb{C})$. Note that j_g is defined on $\mathbb{H}^g := g^{-1}\mathbb{H}$.
- For a tuple $\bar{g} \in GL_2(\mathbb{C})^n$ define functions $j_{\bar{g}}$ and $J_{\bar{g}}$, defined on $\mathbb{H}^{\bar{g}} := \mathbb{H}^{g_1} \times \cdots \times \mathbb{H}^{g_n}$.

- Use Seidenberg's embedding theorem. All solutions to the differential equation of j are of the form $j_g := j(gz)$ with $g \in GL_2(\mathbb{C})$. Note that j_g is defined on $\mathbb{H}^g := g^{-1}\mathbb{H}$.
- For a tuple $\bar{g} \in GL_2(\mathbb{C})^n$ define functions $j_{\bar{g}}$ and $J_{\bar{g}}$, defined on $\mathbb{H}^{\bar{g}} := \mathbb{H}^{g_1} \times \cdots \times \mathbb{H}^{g_n}$.
- Define $\mathbb{H}^{\overline{g}}$ -special and $J_{\overline{g}}$ -special varieties.

- Use Seidenberg's embedding theorem. All solutions to the differential equation of j are of the form $j_g := j(gz)$ with $g \in GL_2(\mathbb{C})$. Note that j_g is defined on $\mathbb{H}^g := g^{-1}\mathbb{H}$.
- For a tuple $\bar{g} \in GL_2(\mathbb{C})^n$ define functions $j_{\bar{g}}$ and $J_{\bar{g}}$, defined on $\mathbb{H}^{\bar{g}} := \mathbb{H}^{g_1} \times \cdots \times \mathbb{H}^{g_n}$.
- Define $\mathbb{H}^{\overline{g}}$ -special and $J_{\overline{g}}$ -special varieties.
- Show that a subvariety of \mathbb{C}^{3n} is D-special if and only if it is strongly $J_{\overline{g}}$ -special for some $\overline{g} \in \mathrm{GL}_2(\mathbb{C})^n$.

- Use Seidenberg's embedding theorem. All solutions to the differential equation of j are of the form $j_g := j(gz)$ with $g \in GL_2(\mathbb{C})$. Note that j_g is defined on $\mathbb{H}^g := g^{-1}\mathbb{H}$.
- For a tuple $\bar{g} \in GL_2(\mathbb{C})^n$ define functions $j_{\bar{g}}$ and $J_{\bar{g}}$, defined on $\mathbb{H}^{\bar{g}} := \mathbb{H}^{g_1} \times \cdots \times \mathbb{H}^{g_n}$.
- Define $\mathbb{H}^{\overline{g}}$ -special and $J_{\overline{g}}$ -special varieties.
- Show that a subvariety of \mathbb{C}^{3n} is D-special if and only if it is strongly $J_{\overline{g}}$ -special for some $\overline{g} \in \mathrm{GL}_2(\mathbb{C})^n$.
- Prove an analogue of Weak MZPD for $J_{\overline{g}}$ -special varieties (uniform in \overline{g}).

22/24

Conjecture (Pila)

For every algebraic variety $V \subsetneq \mathbb{C}^{3n}$ there is a finite collection Σ of proper \mathbb{H} -special subvarieties of \mathbb{H}^n such that every J-special subvariety of V is contained in a J-special variety of the form $\langle \langle \bar{\gamma} U \rangle \rangle$ for some $\bar{\gamma} \in SL_2(\mathbb{Z})^n$ and some $U \in \Sigma$.

Conjecture (Pila)

For every algebraic variety $V \subsetneq \mathbb{C}^{3n}$ there is a finite collection Σ of proper \mathbb{H} -special subvarieties of \mathbb{H}^n such that every J-special subvariety of V is contained in a J-special variety of the form $\langle \langle \bar{\gamma} U \rangle \rangle$ for some $\bar{\gamma} \in SL_2(\mathbb{Z})^n$ and some $U \in \Sigma$.

Theorem (A., 2018)

Let C be an algebraically closed field of characteristic zero. Given an algebraic subvariety $V \subsetneq C^{3n}$, there is a finite collection Σ of proper j-special subvarieties of C^n such that every D-special subvariety of V is contained in a D-special variety associated with some $T \in \Sigma$.

Note that Haden Spence also proved a weak version of MAOD which is different from the above theorem.

< □ > < 同 > < 回 > < 回 > < 回 >

Thank you

-47 ▶

2