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The j-function

Let H := {z ∈ C : Im(z) > 0} be the complex upper half-plane.

GL+
2 (R) is the group of 2× 2 matrices with real entries and positive

determinant. It acts on H via linear fractional transformations. That

is, for g =

(
a b
c d

)
∈ GL+

2 (R) we define

gz =
az + b

cz + d
.

The function j : H→ C is a modular function of weight 0 for the
modular group SL2(Z) defined and analytic on H.
j(gz) = j(z) for all g ∈ SL2(Z).
By means of j the quotient SL2(Z) \H is identified with C (thus, j is
a bijection from the fundamental domain of SL2(Z) to C).
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Modular polynomials

For g ∈ GL+
2 (Q) we let N(g) be the determinant of g scaled so that

it has relatively prime integral entries.

For each positive integer N there is an irreducible polynomial
ΦN(X ,Y ) ∈ Z[X ,Y ] such that whenever g ∈ GL+

2 (Q) with
N = N(g), the function ΦN(j(z), j(gz)) is identically zero.
Conversely, if ΦN(j(x), j(y)) = 0 for some x , y ∈ H then y = gx for
some g ∈ GL+

2 (Q) with N = N(g).
The polynomials ΦN are called modular polynomials.
Φ1(X ,Y ) = X − Y and all the other modular polynomials are
symmetric.
Two elements w1,w2 ∈ C are called modularly independent if they do
not satisfy any modular relation ΦN(w1,w2) = 0.
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j-special varieties

Definition
A j-special subvariety of Cn (coordinatised by ȳ) is an irreducible
component of a variety defined by modular equations, i.e. equations of the
form ΦN(yi , yk) = 0 for some 1 ≤ i , k ≤ n where ΦN(X ,Y ) is a modular
polynomial.

Definition
A subvariety U ⊆ Hn (i.e. an intersection of Hn with some algebraic
variety) is called H-special if it is defined by some equations of the form
zi = gi ,kzk , i 6= k , with gi ,k ∈ GL+

2 (Q), and some equations of the form
zi = τi where τi ∈ H is a quadratic number. For such a U the image j(U)
is j-special (j is identified with its Cartesian powers).
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Modular Zilber-Pink without Derivatives

Definition
For a variety V ⊆ Cn and a special variety S ⊆ Cn, a component X of the
intersection V ∩ S is an atypical subvariety of V if

dimX > dimV + dim S − n.

Conjecture (Modular Zilber–Pink)
Every algebraic variety in Cn contains only finitely many maximal atypical
subvarieties.
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Weak Modular Zilber-Pink without Derivatives

Definition
An atypical subvariety X of V ⊆ Cn is strongly atypical if no coordinate is
constant on X .

Theorem (Pila-Tsimerman, 2015)
Every algebraic variety in Cn contains only finitely many maximal strongly
atypical subvarieties.
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J-special varieties

Define a function J : H→ C3 by

J : z 7→ (j(z), j ′(z), j ′′(z)).

We extend J to Hn by defining

J : z̄ 7→ (j(z̄), j ′(z̄), j ′′(z̄))

where j (k)(z̄) = (j (k)(z1), . . . , j (k)(zn)) for k = 0, 1, 2. Note that j ′′′(z) is
algebraic over j , j ′, j ′′.

Definition (Pila)

Let U ⊆ Hn be H-special. We denote by 〈〈U〉〉 ⊆ C3n the Zariski closure
of J(U) over Qalg. These are the J-special varieties in C3n.

Remark
J-special varieties are irreducible. Strongly J-special varieties (no constant
coordinates) are equal to the product of j-blocks (where all j-coordinates
are pairwise modularly related) each of which has dimension 3 or 4.
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Modular Zilber-Pink with Derivatives

Definition
For a variety V ⊆ C3n we let the J-atypical set of V , denoted AtypJ(V ),
be the union of all atypical components of intersections V ∩ T in C3n

where T ⊆ C3n is a J-special variety.

Conjecture (Pila, “MZPD”)

For every algebraic variety V ⊆ C3n there is a finite collection Σ of proper
H-special subvarieties of Hn such that

AtypJ(V ) ∩ J(Hn) ⊆
⋃
U∈Σ

γ̄∈SL2(Z)n

〈〈γ̄U〉〉.

Remark
Here we may need infinitely many J-special subvarieties to cover the
atypical set of V .
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Weak Modular Zilber-Pink with Derivatives

Definition
For a J-special variety T ⊆ C3n and an algebraic variety V ⊆ C3n an
atypical component X of an intersection V ∩ T in C3n is a strongly
J-atypical subvariety of V if for every irreducible analytic component Y of
X ∩ J(Hn), no coordinate is constant on Y . The strongly J-atypical set of
V , denoted SAtypJ(V ), is the union of all strongly J-atypical subvarieties
of V .

Theorem (A., 2019)

For every algebraic variety V ⊆ C3n there is a finite collection Σ of proper
H-special subvarieties of Hn such that

SAtypJ(V ) ∩ J(Hn) ⊆
⋃
U∈Σ

γ̄∈SL2(Z)n

〈〈γ̄U〉〉.

Vahagn Aslanyan (UEA) FMZPD Oxford 7 November 2019 9 / 24



Weak Modular Zilber-Pink with Derivatives

Definition
For a J-special variety T ⊆ C3n and an algebraic variety V ⊆ C3n an
atypical component X of an intersection V ∩ T in C3n is a strongly
J-atypical subvariety of V if for every irreducible analytic component Y of
X ∩ J(Hn), no coordinate is constant on Y . The strongly J-atypical set of
V , denoted SAtypJ(V ), is the union of all strongly J-atypical subvarieties
of V .

Theorem (A., 2019)

For every algebraic variety V ⊆ C3n there is a finite collection Σ of proper
H-special subvarieties of Hn such that

SAtypJ(V ) ∩ J(Hn) ⊆
⋃
U∈Σ

γ̄∈SL2(Z)n

〈〈γ̄U〉〉.

Vahagn Aslanyan (UEA) FMZPD Oxford 7 November 2019 9 / 24



Sketch of Proof - Complex Ax-Schanuel

Let prj : C3n → Cn be the projection onto the j-coordinates, i.e. the
first n coordinates. By abuse of notation, we also let prj : C4n → Cn

be the projection onto the second n coordinates.

Let Γ ⊆ Hn × C3n be the graph of J : Hn → C3n.

Theorem (Complex Ax-Schanuel for j , Pila-Tsimerman 2015)

Let V ⊆ C4n be an algebraic variety and let A be an analytic component of
the intersection V ∩ Γ. If dimA > dimV − 3n and no coordinate is
constant on prj A then it is contained in a proper j-special subvariety of Cn.

Theorem (Uniform Ax-Schanuel)

Let Vc̄ ⊆ C4n be a parametric family of algebraic varieties. Then there is a
finite collection Σ of proper j-special subvarieties of Cn such that for every
c̄ ⊆ C, if Ac̄ is an analytic component of the intersection Vc̄ ∩ Γ with
dimAc̄ > dimVc̄ − 3n, and no coordinate is constant on prj Ac̄ , then prj Ac̄

is contained in some T ′ ∈ Σ.
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Sketch of Proof - Dimension of Intersection

Theorem (Dimension of Intersection)
Let A,B ⊆ M be analytic varieties where M is smooth. Then for any
component X of A ∩ B we have

dimX ≥ dimA + dimB − dimM.

Corollary
Let A,B ⊆ M be irreducible analytic varieties (M may not be smooth). If
X (a component of A ∩ B) contains a non-singular point of M then

dimX ≥ dimA + dimB − dimM.
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Sketch of proof - Non-singular points

Lemma
Assume T ⊆ C3n is J-special and Y is a complex analytically irreducible
subset of T ∩ J(Hn) without constant coordinates. Then Y contains a
non-singular point of T .

Proof.
Assume T consists of a single j-block, i.e. all j-coordinates of T are
pairwise modularly related.
Let Ts ( T be the set of singular points of T .
If Z := J−1(Ts) is uncountable then it has a limit point, and we can
deduce that z , j(z), j ′(z), j ′′(z) are algebraically dependent.
Contradiction.
Hence Ts ∩ J(Hn) is countable and Y * Ts .
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Theorem recalled

Definition
For a J-special variety T ⊆ C3n and an algebraic variety V ⊆ C3n an
atypical component X of an intersection V ∩ T in C3n is a strongly
J-atypical subvariety of V if for every irreducible analytic component Y of
X ∩ J(Hn), no coordinate is constant on Y . The strongly J-atypical set of
V , denoted SAtypJ(V ), is the union of all strongly J-atypical subvarieties
of V .

Theorem
For every algebraic variety V ⊆ C3n there is a finite collection Σ of proper
H-special subvarieties of Hn such that

SAtypJ(V ) ∩ J(Hn) ⊆
⋃
U∈Σ

γ̄∈SL2(Z)n

〈〈γ̄U〉〉.
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Sketch of Proof

Let T = 〈〈U〉〉 ⊆ C3n be a J-special variety and X ⊆ V ∩ T be a
strongly atypical component, dimX > dimV + dimT − 3n.
Assume A ⊆ X ∩ J(Hn) is an analytic component such that no
coordinate is constant on A. Then A ⊆ J(U) ⊆ T , and A is an
analytic component of X ∩ J(U).
By Lemma, A contains a non-singular point of T . Hence,

dimA ≥ dimX + dim J(U)− dimT >

dimV + dimT − 3n + dim J(U)− dimT = dimV + dimU − 3n.

This implies

dim((U × A) ∩ Γ) = dimA > dim(U × V )− 3n.

Now the desired result follows from Uniform Ax-Schanuel applied to
the parametric family of algebraic varieties Wc̄ × V where Wc̄ varies
over the parametric family of all C-geodesic varieties.
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Differential equation

The j-function satisfies an order 3 algebraic differential equation over
Q. Namely, Ψj(j , j

′, j ′′, j ′′′) = 0 where

Ψj(y0, y1, y2, y3) =
y3

y1
− 3

2

(
y2

y1

)2

+
y2
0 − 1968y0 + 2654208

2y2
0 (y0 − 1728)2 · y2

1 .

Thus
Ψj(y , y

′, y ′′, y ′′′) = Sy + R(y)(y ′)2,

where S denotes the Schwarzian derivative defined by

Sy = y ′′′

y ′ − 3
2

(
y ′′

y ′

)2
and R(y) = y2−1968y+2654208

2y2(y−1728)2
.

All functions j(gz) with g ∈ SL2(C) satisfy the differential equation
Ψj(y , y

′, y ′′, y ′′′) = 0 and in fact all solutions are of that form.
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Differential equation

Let (K ; +, ·,D) be a differential field with field of constants C := kerD.
Let E(z,J)(x , y , y ′, y ′′) denote the formula

∃y ′′′
(

Ψj

(
y , y ′, y ′′, y ′′′

)
= 0 ∧ Dx =

Dy

y ′
=

Dy ′

y ′′
=

Dy ′′

y ′′′

)
.

By abuse of notation we will also let E(z,J)(K ) denote the set of all
tuples (x̄ , ȳ , ȳ ′, ȳ ′′) ∈ K 4n with (xi , yi , y

′
i , y
′′
i ) ∈ E(z,J)(K ). The set

E×(z,J)(K ) consists of all E(z,J)(K )-points that do not have any
constant coordinates.

EJ(y , y ′, y ′′) is the projection of E(z,J) onto the last three coordinates,
i.e. ∃xE(z,J)(x , y , y ′, y ′′). Equivalently, EJ is given by

∃y ′′′
(

Ψj(y , y
′, y ′′, y ′′′) = 0 ∧ Dy

y ′
=

Dy ′

y ′′
=

Dy ′′

y ′′′

)
.

As above, EJ(K ) also denotes the set of all tuples (ȳ , ȳ ′, ȳ ′′) ∈ K 3n

such that (yi , y
′
i , y
′′
i ) ∈ EJ(K ) for all i , and E×J (K ) is the set of all

points in EJ(K ) with no constant coordinates.
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Functional equations

Let E(z,j)(x , y) be the projection ∃y ′, y ′′E(z,J)(x , y , y ′, y ′′). Define E×(z,j) as
above.

If (zi , ji ) ∈ E×(z,j)(K ), i = 1, 2, and ΦN(j1, j2) = 0 for some modular
polynomial ΦN then z2 = gz1 for some g ∈ SL2(C ).
If (z1, j1) ∈ E×(z,j)(K ) and (z2, j2) ∈ K 2 such that ΦN(j1, j2) = 0 for
some ΦN and z2 = gz1 for some g ∈ SL2(C ) then (z2, j2) ∈ E×(z,j)(K ).
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Ax-Schanuel for j

Theorem (Pila-Tsimerman, 2015 )
Let (K ;D) be a differential field with field of constants C . Assume
(zi , ji , j

′
i , j
′′
i ) ∈ E×(z,J)(K ), i = 1, . . . , n. If the ji ’s are pairwise modularly

independent then
tdC C

(
z̄ , j̄ , j̄ ′, j̄ ′′

)
≥ 3n + 1.

Vahagn Aslanyan (UEA) FMZPD Oxford 7 November 2019 18 / 24



D-special varieties

Let C be an algebraically closed field. Define D as the zero derivation on C
and extend (C ; +, ·,D) to a differentially closed field (K ; +, ·,D).

A C -geodesic variety U ⊆ Cn (with coordinates x̄) is an irreducible
component of a variety defined by equations of the form xi = gi ,kxk
for some gi ,k ∈ SL2(C ). If S ⊆ Cn (with coordinates ȳ) is a j-special
variety, then U is said to be a C -geodesic variety associated with S if
for any 1 ≤ i , k ≤ n we have ΦN(yi , yk) = 0 on S for some N if and
only if xi = gi ,kxk on U for some gi ,k ∈ SL2(C ).

Let T ⊆ Cn be a j-special variety and U ⊆ Cn be a C -geodesic
variety associated with T . Denote by 〈〈U,T 〉〉 the Zariski closure over
C of the projection of the set

E×(z,J)(K ) ∩ (U(K )× T (K )× K 2)

onto the last 3n coordinates.
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D-special varieties (continued)

A D-special variety is a variety S := 〈〈U,T 〉〉 for some T and U as
above. In this case S is said to be a D-special variety associated with
T and U. We will also say that T (or U) is a j-special (respectively,
geodesic) variety associated with S . A D-special variety associated
with T is one associated with T and U for some C -geodesic variety U
associated with T .
S ∼ T means that S is a D-special variety associated with T . For a
set Σ of j-special varieties S ∼ Σ means that S ∼ T for some T ∈ Σ.
SD is the collection of all D-special varieties.
D-special varieties are irreducible.
Strongly J-special varieties are D-special.
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Differential Modular Zilber–Pink with Derivatives

Definition
For a variety V ⊆ C 3n we let the D-atypical set of V , denoted AtypD(V ),
be the union of all D-atypical subvarieties of V , that is, atypical
components of intersections V ∩ T where T ⊆ C 3n is D-special.

Theorem (A., 2019)
Let (K ; +, ·,D) be a differential field with an algebraically closed field of
constants C . Given an algebraic variety V ⊆ C 3n, there is a finite
collection Σ of proper j-special subvarieties of Cn such that

AtypD(V )(K ) ∩ E×J (K ) ⊆
⋃
P∼Σ
P∈SD

P.

Pila and Scanlon proved some differential Zilber-Pink statements, but they
did not consider derivatives.
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Sketch of proof

Use Seidenberg’s embedding theorem. All solutions to the differential
equation of j are of the form jg := j(gz) with g ∈ GL2(C). Note that
jg is defined on Hg := g−1H.

For a tuple ḡ ∈ GL2(C)n define functions jḡ and Jḡ , defined on
Hḡ := Hg1 × · · · ×Hgn .

Define Hḡ -special and Jḡ -special varieties.
Show that a subvariety of C3n is D-special if and only if it is strongly
Jḡ -special for some ḡ ∈ GL2(C)n.
Prove an analogue of Weak MZPD for Jḡ -special varieties (uniform in
ḡ).
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Modular André-Oort with Derivatives

Conjecture (Pila)

For every algebraic variety V ( C3n there is a finite collection Σ of proper
H-special subvarieties of Hn such that every J-special subvariety of V is
contained in a J-special variety of the form 〈〈γ̄U〉〉 for some γ̄ ∈ SL2(Z)n

and some U ∈ Σ.

Theorem (A., 2018)
Let C be an algebraically closed field of characteristic zero. Given an
algebraic subvariety V ( C 3n, there is a finite collection Σ of proper
j-special subvarieties of Cn such that every D-special subvariety of V is
contained in a D-special variety associated with some T ∈ Σ.

Note that Haden Spence also proved a weak version of MAOD which is
different from the above theorem.
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Thank you
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