A remark on unlikely intersections

Vahagn Aslanyan
University of East Anglia

25 May 2022

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

- A famous example is Faltings's theorem (the Mordell conjecture) stating that certain Diophantine equations have only finitely many rational solutions.

Diophantine geometry

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^{2}+y^{2}=1$ can be interpreted as rational points on the unit circle.

- A famous example is Faltings's theorem (the Mordell conjecture) stating that certain Diophantine equations have only finitely many rational solutions. For instance, the equation $x^{4}+y^{4}=1$ has only finitely many rational solutions.

Diophantine geometry (continued)

- We are often interested in special solutions of polynomial equations.

Diophantine geometry (continued)

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers $z \in \mathbb{C}$ for which $z^{n}=1$ for some $n>0$ (e.g. $i^{4}=1$). These are the images of rational numbers under the function $e^{2 \pi i z}$. Indeed, $\left(e^{2 \pi i \cdot \frac{m}{n}}\right)^{n}=\left(e^{2 \pi i}\right)^{m}=1$.

Diophantine geometry (continued)

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers $z \in \mathbb{C}$ for which $z^{n}=1$ for some $n>0$ (e.g. $i^{4}=1$). These are the images of rational numbers under the function $e^{2 \pi i z}$. Indeed, $\left(e^{2 \pi i \cdot \frac{m}{n}}\right)^{n}=\left(e^{2 \pi i}\right)^{m}=1$.
- The equation $x+y=2$ has only finitely many solutions with x, y roots of unity. In fact, the only solution is $x=y=1$.

Diophantine geometry (continued)

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers $z \in \mathbb{C}$ for which $z^{n}=1$ for some $n>0$ (e.g. $i^{4}=1$). These are the images of rational numbers under the function $e^{2 \pi i z}$. Indeed, $\left(e^{2 \pi i \cdot \frac{m}{n}}\right)^{n}=\left(e^{2 \pi i}\right)^{m}=1$.
- The equation $x+y=2$ has only finitely many solutions with x, y roots of unity. In fact, the only solution is $x=y=1$.
- But $x^{2} y=1$ has infinitely many special solutions. If $x=\zeta$ is any root of unity then so is $y=\zeta^{-2}$.

Diophantine geometry (continued)

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers $z \in \mathbb{C}$ for which $z^{n}=1$ for some $n>0$ (e.g. $i^{4}=1$). These are the images of rational numbers under the function $e^{2 \pi i z}$. Indeed, $\left(e^{2 \pi i \cdot \frac{m}{n}}\right)^{n}=\left(e^{2 \pi i}\right)^{m}=1$.
- The equation $x+y=2$ has only finitely many solutions with x, y roots of unity. In fact, the only solution is $x=y=1$.
- But $x^{2} y=1$ has infinitely many special solutions. If $x=\zeta$ is any root of unity then so is $y=\zeta^{-2}$.
- S. Lang asked the following question in the 1960 s. Assume $f(x, y)=0$ contains infinitely many points $(\xi, \eta$) whose coordinates are roots of unity (f is an irreducible polynomial). What can be said about f ?

Diophantine geometry (continued)

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers $z \in \mathbb{C}$ for which $z^{n}=1$ for some $n>0$ (e.g. $i^{4}=1$). These are the images of rational numbers under the function $e^{2 \pi i z}$. Indeed, $\left(e^{2 \pi i \cdot \frac{m}{n}}\right)^{n}=\left(e^{2 \pi i}\right)^{m}=1$.
- The equation $x+y=2$ has only finitely many solutions with x, y roots of unity. In fact, the only solution is $x=y=1$.
- But $x^{2} y=1$ has infinitely many special solutions. If $x=\zeta$ is any root of unity then so is $y=\zeta^{-2}$.
- S. Lang asked the following question in the 1960 s. Assume $f(x, y)=0$ contains infinitely many points (ξ, η) whose coordinates are roots of unity (f is an irreducible polynomial). What can be said about f ? It turns out that up to multiplication by a constant f must be of the form $x^{m} y^{n}-\zeta$ where $m, n \in \mathbb{Z}$ and ζ is a root of unity.

Diophantine geometry (continued)

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers $z \in \mathbb{C}$ for which $z^{n}=1$ for some $n>0$ (e.g. $i^{4}=1$). These are the images of rational numbers under the function $e^{2 \pi i z}$. Indeed, $\left(e^{2 \pi i \cdot \frac{m}{n}}\right)^{n}=\left(e^{2 \pi i}\right)^{m}=1$.
- The equation $x+y=2$ has only finitely many solutions with x, y roots of unity. In fact, the only solution is $x=y=1$.
- But $x^{2} y=1$ has infinitely many special solutions. If $x=\zeta$ is any root of unity then so is $y=\zeta^{-2}$.
- S. Lang asked the following question in the 1960 s. Assume $f(x, y)=0$ contains infinitely many points (ξ, η) whose coordinates are roots of unity (f is an irreducible polynomial). What can be said about f ? It turns out that up to multiplication by a constant f must be of the form $x^{m} y^{n}-\zeta$ where $m, n \in \mathbb{Z}$ and ζ is a root of unity.
- In other words, if a curve contains infinitely many points with special coordinates, then it must be of a special form.

Algebraic varieties

- An algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations.

Algebraic varieties

- An algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^{3}.

Algebraic varieties

- An algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^{3}.
- For example, the set

$$
\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}
$$

is an algebraic variety.

Algebraic varieties

- An algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^{3}.
- For example, the set

$$
\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}
$$

is an algebraic variety.

- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties.

Algebraic varieties

- An algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^{3}.
- For example, the set

$$
\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}
$$

is an algebraic variety.

- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties. For instance, in \mathbb{C}^{2} the variety $x^{2}+y^{2}=1$ is irreducible but $x^{2}+y^{2}=0$ is reducible (it is the union of the lines $x=i y$ and $x=-i y$).

Algebraic varieties

- An algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^{3}.
- For example, the set

$$
\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}
$$

is an algebraic variety.

- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties. For instance, in \mathbb{C}^{2} the variety $x^{2}+y^{2}=1$ is irreducible but $x^{2}+y^{2}=0$ is reducible (it is the union of the lines $x=i y$ and $x=-i y)$.
- If $f(X, Y, Z) \in \mathbb{C}[X, Y, Z]$ is an irreducible polynomial then $f(x, y, z)=0$ defines an irreducible (hyper)surface.

Algebraic varieties

- An algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^{3}.
- For example, the set

$$
\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}
$$

is an algebraic variety.

- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties. For instance, in \mathbb{C}^{2} the variety $x^{2}+y^{2}=1$ is irreducible but $x^{2}+y^{2}=0$ is reducible (it is the union of the lines $x=i y$ and $x=-i y)$.
- If $f(X, Y, Z) \in \mathbb{C}[X, Y, Z]$ is an irreducible polynomial then $f(x, y, z)=0$ defines an irreducible (hyper)surface.
- Every algebraic variety can be decomposed into a finite union of irreducible components.

Algebraic varieties

- An algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^{3}.
- For example, the set

$$
\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}
$$

is an algebraic variety.

- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties. For instance, in \mathbb{C}^{2} the variety $x^{2}+y^{2}=1$ is irreducible but $x^{2}+y^{2}=0$ is reducible (it is the union of the lines $x=i y$ and $x=-i y)$.
- If $f(X, Y, Z) \in \mathbb{C}[X, Y, Z]$ is an irreducible polynomial then $f(x, y, z)=0$ defines an irreducible (hyper)surface.
- Every algebraic variety can be decomposed into a finite union of irreducible components.
- The set $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$ can be identified with the variety

$$
\left\{(x, y) \in \mathbb{C}^{2}: x y=1\right\} \subseteq \mathbb{C}^{2}
$$

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.
- $\operatorname{dim} \mathbb{C}^{n}=\operatorname{dim}\left(\mathbb{C}^{\times}\right)^{n}=n$.

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.
- $\operatorname{dim} \mathbb{C}^{n}=\operatorname{dim}\left(\mathbb{C}^{\times}\right)^{n}=n$.
- $\operatorname{dim} V=0$ if and only if V is finite.

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.
- $\operatorname{dim} \mathbb{C}^{n}=\operatorname{dim}\left(\mathbb{C}^{\times}\right)^{n}=n$.
- $\operatorname{dim} V=0$ if and only if V is finite.
- If $V \subseteq \mathbb{C}^{n}$ is defined by t independent equations, then we expect its dimension to be $n-t$. For instance, if V is defined by a single non-constant polynomial (it is a hypersurface), then it has dimension $n-1$.

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.
- $\operatorname{dim} \mathbb{C}^{n}=\operatorname{dim}\left(\mathbb{C}^{\times}\right)^{n}=n$.
- $\operatorname{dim} V=0$ if and only if V is finite.
- If $V \subseteq \mathbb{C}^{n}$ is defined by t independent equations, then we expect its dimension to be $n-t$. For instance, if V is defined by a single non-constant polynomial (it is a hypersurface), then it has dimension $n-1$. For instance, the equation $x=y$ defines a 1-dimensional variety in \mathbb{C}^{2} and a 2-dimensional variety in \mathbb{C}^{3}.

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.
- $\operatorname{dim} \mathbb{C}^{n}=\operatorname{dim}\left(\mathbb{C}^{\times}\right)^{n}=n$.
- $\operatorname{dim} V=0$ if and only if V is finite.
- If $V \subseteq \mathbb{C}^{n}$ is defined by t independent equations, then we expect its dimension to be $n-t$. For instance, if V is defined by a single non-constant polynomial (it is a hypersurface), then it has dimension $n-1$. For instance, the equation $x=y$ defines a 1-dimensional variety in \mathbb{C}^{2} and a 2-dimensional variety in \mathbb{C}^{3}.
- The variety defined by three equations $x^{2}-y^{2}=1, x^{2}-z^{2}=1, x(y-z)=0$ has dimension 1 in \mathbb{C}^{3}.

Algebraic tori

- Let $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$ be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case $(x, y) \mapsto x y$).

Algebraic tori

- Let $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$ be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case $(x, y) \mapsto x y$). For any $n \in \mathbb{N}$ the Cartesian power $\left(\mathbb{C}^{\times}\right)^{n}$ is also a group under coordinate-wise multiplication.

Algebraic tori

- Let $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$ be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case $(x, y) \mapsto x y$). For any $n \in \mathbb{N}$ the Cartesian power $\left(\mathbb{C}^{\times}\right)^{n}$ is also a group under coordinate-wise multiplication.
- A subvariety $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is called an algebraic torus if it is irreducible and is a subgroup of $\left(\mathbb{C}^{\times}\right)^{n}$.

Algebraic tori

- Let $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$ be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case $(x, y) \mapsto x y$). For any $n \in \mathbb{N}$ the Cartesian power $\left(\mathbb{C}^{\times}\right)^{n}$ is also a group under coordinate-wise multiplication.
- A subvariety $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is called an algebraic torus if it is irreducible and is a subgroup of $\left(\mathbb{C}^{\times}\right)^{n}$.
- For example, the variety $x^{5} y z^{2}=1$ is an algebraic torus, for if $x_{1}^{5} y_{1} z_{1}^{2}=1$ and $x_{2}^{5} y_{2} z_{2}^{2}=1$ then $\left(x_{1} x_{2}\right)^{5} \cdot\left(y_{1} y_{2}\right) \cdot\left(z_{1} z_{2}\right)^{2}=1$.

Algebraic tori

- Let $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$ be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case $(x, y) \mapsto x y$). For any $n \in \mathbb{N}$ the Cartesian power $\left(\mathbb{C}^{\times}\right)^{n}$ is also a group under coordinate-wise multiplication.
- A subvariety $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is called an algebraic torus if it is irreducible and is a subgroup of $\left(\mathbb{C}^{\times}\right)^{n}$.
- For example, the variety $x^{5} y z^{2}=1$ is an algebraic torus, for if $x_{1}^{5} y_{1} z_{1}^{2}=1$ and $x_{2}^{5} y_{2} z_{2}^{2}=1$ then $\left(x_{1} x_{2}\right)^{5} \cdot\left(y_{1} y_{2}\right) \cdot\left(z_{1} z_{2}\right)^{2}=1$.
- An algebraic torus is defined by (several) multiplicative equations as above.

Algebraic tori

- Let $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$ be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case $(x, y) \mapsto x y$). For any $n \in \mathbb{N}$ the Cartesian power $\left(\mathbb{C}^{\times}\right)^{n}$ is also a group under coordinate-wise multiplication.
- A subvariety $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is called an algebraic torus if it is irreducible and is a subgroup of $\left(\mathbb{C}^{\times}\right)^{n}$.
- For example, the variety $x^{5} y z^{2}=1$ is an algebraic torus, for if $x_{1}^{5} y_{1} z_{1}^{2}=1$ and $x_{2}^{5} y_{2} z_{2}^{2}=1$ then $\left(x_{1} x_{2}\right)^{5} \cdot\left(y_{1} y_{2}\right) \cdot\left(z_{1} z_{2}\right)^{2}=1$.
- An algebraic torus is defined by (several) multiplicative equations as above.
- Torsion cosets of tori, that is, sets of the form $\zeta \cdot T$ where $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is a torus and the coordinates of ζ are roots of unity, are known as special varieties.

Algebraic tori

- Let $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$ be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case $(x, y) \mapsto x y$). For any $n \in \mathbb{N}$ the Cartesian power $\left(\mathbb{C}^{\times}\right)^{n}$ is also a group under coordinate-wise multiplication.
- A subvariety $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is called an algebraic torus if it is irreducible and is a subgroup of $\left(\mathbb{C}^{\times}\right)^{n}$.
- For example, the variety $x^{5} y z^{2}=1$ is an algebraic torus, for if $x_{1}^{5} y_{1} z_{1}^{2}=1$ and $x_{2}^{5} y_{2} z_{2}^{2}=1$ then $\left(x_{1} x_{2}\right)^{5} \cdot\left(y_{1} y_{2}\right) \cdot\left(z_{1} z_{2}\right)^{2}=1$.
- An algebraic torus is defined by (several) multiplicative equations as above.
- Torsion cosets of tori, that is, sets of the form $\zeta \cdot T$ where $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is a torus and the coordinates of ζ are roots of unity, are known as special varieties. For example, $x^{5} y z^{3}=i$ is special.

Algebraic tori

- Let $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$ be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case $(x, y) \mapsto x y$). For any $n \in \mathbb{N}$ the Cartesian power $\left(\mathbb{C}^{\times}\right)^{n}$ is also a group under coordinate-wise multiplication.
- A subvariety $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is called an algebraic torus if it is irreducible and is a subgroup of $\left(\mathbb{C}^{\times}\right)^{n}$.
- For example, the variety $x^{5} y z^{2}=1$ is an algebraic torus, for if $x_{1}^{5} y_{1} z_{1}^{2}=1$ and $x_{2}^{5} y_{2} z_{2}^{2}=1$ then $\left(x_{1} x_{2}\right)^{5} \cdot\left(y_{1} y_{2}\right) \cdot\left(z_{1} z_{2}\right)^{2}=1$.
- An algebraic torus is defined by (several) multiplicative equations as above.
- Torsion cosets of tori, that is, sets of the form $\zeta \cdot T$ where $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is a torus and the coordinates of ζ are roots of unity, are known as special varieties. For example, $x^{5} y z^{3}=i$ is special.
- Special varieties contain infinitely many special points.

Algebraic tori

- Let $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$ be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case $(x, y) \mapsto x y$). For any $n \in \mathbb{N}$ the Cartesian power $\left(\mathbb{C}^{\times}\right)^{n}$ is also a group under coordinate-wise multiplication.
- A subvariety $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is called an algebraic torus if it is irreducible and is a subgroup of $\left(\mathbb{C}^{\times}\right)^{n}$.
- For example, the variety $x^{5} y z^{2}=1$ is an algebraic torus, for if $x_{1}^{5} y_{1} z_{1}^{2}=1$ and $x_{2}^{5} y_{2} z_{2}^{2}=1$ then $\left(x_{1} x_{2}\right)^{5} \cdot\left(y_{1} y_{2}\right) \cdot\left(z_{1} z_{2}\right)^{2}=1$.
- An algebraic torus is defined by (several) multiplicative equations as above.
- Torsion cosets of tori, that is, sets of the form $\zeta \cdot T$ where $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is a torus and the coordinates of ζ are roots of unity, are known as special varieties. For example, $x^{5} y z^{3}=i$ is special.
- Special varieties contain infinitely many special points. If an irreducible curve contains infinitely many special points, then it must be special.

Manin-Mumford conjecture

Theorem (Manin-Mumford for tori; Raynaud, Hindry)

Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be an algebraic variety. Then V contains only finitely many maximal special subvarieties.

Manin-Mumford conjecture

Theorem (Manin-Mumford for tori; Raynaud, Hindry)

Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be an algebraic variety. Then V contains only finitely many maximal special subvarieties.

- If V is an irreducible curve then either it is special or it contains only finitely many special points.

Manin-Mumford conjecture

Theorem (Manin-Mumford for tori; Raynaud, Hindry)

Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be an algebraic variety. Then V contains only finitely many maximal special subvarieties.

- If V is an irreducible curve then either it is special or it contains only finitely many special points.
- If V is irreducible and contains a "Zariski dense" set of special points (too many special points) then V is special.

Dimension of intersection

- Given two varieties V and W in \mathbb{C}^{n}, one expects $\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W-n$.

Dimension of intersection

- Given two varieties V and W in \mathbb{C}^{n}, one expects

$$
\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W-n .
$$

- Suppose V is defined by t equations and W is defined by s equations. Then $V \cap W$ is defined by $t+s$ equations, so we expect $\operatorname{dim} V=n-t, \operatorname{dim} W=n-s, \operatorname{dim}(V \cap W)=n-(s+t)=(n-t)+(n-s)-n$.

Dimension of intersection

- Given two varieties V and W in \mathbb{C}^{n}, one expects

$$
\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W-n
$$

- Suppose V is defined by t equations and W is defined by s equations. Then $V \cap W$ is defined by $t+s$ equations, so we expect $\operatorname{dim} V=n-t, \operatorname{dim} W=n-s, \operatorname{dim}(V \cap W)=n-(s+t)=(n-t)+(n-s)-n$.
- Two curves in a two-dimensional space are likely to intersect, while two curves in a three-dimensional space are not. If they do intersect, then we have an unlikely intersection.

Dimension of intersection

- Given two varieties V and W in \mathbb{C}^{n}, one expects

$$
\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W-n
$$

- Suppose V is defined by t equations and W is defined by s equations. Then $V \cap W$ is defined by $t+s$ equations, so we expect $\operatorname{dim} V=n-t, \operatorname{dim} W=n-s, \operatorname{dim}(V \cap W)=n-(s+t)=(n-t)+(n-s)-n$.
- Two curves in a two-dimensional space are likely to intersect, while two curves in a three-dimensional space are not. If they do intersect, then we have an unlikely intersection.

Theorem

Let $V, W \subseteq \mathbb{C}^{n}$ be irreducible algebraic varieties and $X \subseteq V \cap W$ be an irreducible component of the intersection. Then

$$
\operatorname{dim} X \geq \operatorname{dim} V+\operatorname{dim} W-n .
$$

Dimension of intersection

- Given two varieties V and W in \mathbb{C}^{n}, one expects

$$
\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W-n
$$

- Suppose V is defined by t equations and W is defined by s equations. Then $V \cap W$ is defined by $t+s$ equations, so we expect $\operatorname{dim} V=n-t, \operatorname{dim} W=n-s, \operatorname{dim}(V \cap W)=n-(s+t)=(n-t)+(n-s)-n$.
- Two curves in a two-dimensional space are likely to intersect, while two curves in a three-dimensional space are not. If they do intersect, then we have an unlikely intersection.

Theorem

Let $V, W \subseteq \mathbb{C}^{n}$ be irreducible algebraic varieties and $X \subseteq V \cap W$ be an irreducible component of the intersection. Then

$$
\operatorname{dim} X \geq \operatorname{dim} V+\operatorname{dim} W-n .
$$

Definition

X is an atypical component of $V \cap W$ if $\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} W-n$.

Special and atypical subvarieties

Definition

Torsion cosets of tori are special varieties. These are defined by equations of the form $x^{a} y^{b} z^{c}=\zeta$ where ζ is a root of unity.

Special and atypical subvarieties

Definition

Torsion cosets of tori are special varieties. These are defined by equations of the form $x^{a} y^{b} z^{c}=\zeta$ where ζ is a root of unity.

Definition

For a variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ and a special variety $S \subseteq\left(\mathbb{C}^{\times}\right)^{n}$, a component X of the intersection $V \cap S$ is an atypical subvariety of V if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} S-n
$$

Special and atypical subvarieties

Definition

Torsion cosets of tori are special varieties. These are defined by equations of the form $x^{a} y^{b} z^{c}=\zeta$ where ζ is a root of unity.

Definition

For a variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ and a special variety $S \subseteq\left(\mathbb{C}^{\times}\right)^{n}$, a component X of the intersection $V \cap S$ is an atypical subvariety of V if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} S-n
$$

Remark

If $T \subseteq V \subsetneq\left(\mathbb{C}^{\times}\right)^{n}$ and T is special then it is an atypical subvariety of V, for

$$
\operatorname{dim} T>\operatorname{dim} V+\operatorname{dim} T-n .
$$

Special and atypical subvarieties

Definition

Torsion cosets of tori are special varieties. These are defined by equations of the form $x^{a} y^{b} z^{c}=\zeta$ where ζ is a root of unity.

Definition

For a variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ and a special variety $S \subseteq\left(\mathbb{C}^{\times}\right)^{n}$, a component X of the intersection $V \cap S$ is an atypical subvariety of V if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} S-n
$$

Remark

If $T \subseteq V \subsetneq\left(\mathbb{C}^{\times}\right)^{n}$ and T is special then it is an atypical subvariety of V, for

$$
\operatorname{dim} T>\operatorname{dim} V+\operatorname{dim} T-n .
$$

For example, if $V \subseteq\left(\mathbb{C}^{\times}\right)^{2}$ is defined by the equation $x y+x^{2} y^{3}=i+1$ then it contains the special variety defined by the equations $x y_{0}=i, x^{2} y^{3}=1$.

Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in $\left(\mathbb{C}^{\times}\right)^{n}$ contains only finitely many maximal atypical subvarieties.

Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in $\left(\mathbb{C}^{\times}\right)^{n}$ contains only finitely many maximal atypical subvarieties.

Conjecture (CIT)

Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be an algebraic variety. Then there is a finite collection Σ of proper special subvarieties of $\left(\mathbb{C}^{\times}\right)^{n}$ such that every atypical subvariety X of V is contained in some $T \in \Sigma$.

Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in $\left(\mathbb{C}^{\times}\right)^{n}$ contains only finitely many maximal atypical subvarieties.

Conjecture (CIT)

Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be an algebraic variety. Then there is a finite collection Σ of proper special subvarieties of $\left(\mathbb{C}^{\times}\right)^{n}$ such that every atypical subvariety X of V is contained in some $T \in \Sigma$.

Theorem (Weak CIT; Zilber, Bombieri-Masser-Zannier, Kirby)

Let V be an algebraic subvariety of $\left(\mathbb{C}^{\times}\right)^{n}$. Then there is a finite collection Σ of proper algebraic subtori of $\left(\mathbb{C}^{\times}\right)^{n}$ such that every atypical subvariety of V is contained in a (not necessarily torsion) coset of some $T \in \Sigma$.

A stronger version of weak CIT

Definition

- Arbitrary cosets of algebraic tori are called weakly special varieties.

A stronger version of weak CIT

Definition

- Arbitrary cosets of algebraic tori are called weakly special varieties.
- Let $X \subseteq\left(\mathbb{C}^{\times}\right)^{n}$. The weakly special closure of X is the smallest weakly special subvariety containing X.

A stronger version of weak CIT

Definition

- Arbitrary cosets of algebraic tori are called weakly special varieties.
- Let $X \subseteq\left(\mathbb{C}^{\times}\right)^{n}$. The weakly special closure of X is the smallest weakly special subvariety containing X.

Theorem (A., 2019)

For every variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ there is a finite collection Σ of proper special subvarieties of $\left(\mathbb{C}^{\times}\right)^{n}$ such that every atypical subvariety of V, whose weakly special closures is special, is contained in some $T \in \Sigma$.

A stronger version of weak CIT

Definition

- Arbitrary cosets of algebraic tori are called weakly special varieties.
- Let $X \subseteq\left(\mathbb{C}^{\times}\right)^{n}$. The weakly special closure of X is the smallest weakly special subvariety containing X.

Theorem (A., 2019)

For every variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ there is a finite collection Σ of proper special subvarieties of $\left(\mathbb{C}^{\times}\right)^{n}$ such that every atypical subvariety of V, whose weakly special closures is special, is contained in some $T \in \Sigma$.

Theorem (A., 2019)

Every variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ contains only finitely many maximal atypical subvarieties whose weakly special closures are special.

A stronger version of weak CIT

Definition

- Arbitrary cosets of algebraic tori are called weakly special varieties.
- Let $X \subseteq\left(\mathbb{C}^{\times}\right)^{n}$. The weakly special closure of X is the smallest weakly special subvariety containing X.

Theorem (A., 2019)

For every variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ there is a finite collection Σ of proper special subvarieties of $\left(\mathbb{C}^{\times}\right)^{n}$ such that every atypical subvariety of V, whose weakly special closures is special, is contained in some $T \in \Sigma$.

Theorem (A., 2019)

Every variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ contains only finitely many maximal atypical subvarieties whose weakly special closures are special.

The proof combines weak CIT with Manin-Mumford.

Thank you

Г-special and Г-atypical sets

Definition

Let $\Gamma \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be a subgroup of finite rank.

- A Γ-special subvariety of $\left(\mathbb{C}^{\times}\right)^{n}$ is a translate of a torus by an element of Γ, i.e. a coset γT where T is a torus and $\gamma \in \Gamma$.
- For an algebraic variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$, an atypical component X of an intersection $V \cap S$, where $S \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is Γ-special, is called Γ-atypical if every coset of a subtorus of $\left(\mathbb{C}^{\times}\right)^{n}$ containing X is Γ-special, i.e. contains a point of Γ. For example, if $X \cap \Gamma \neq \emptyset$ then X is Γ-atypical.

Mordell-Lang

Theorem (Mordell-Lang for $\left(\mathbb{C}^{\times}\right)^{n}$; Laurent)

Let $\Gamma \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be a subgroup of finite rank. Then an algebraic variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ contains only finitely many maximal \lceil-special subvarieties.

Theorem

If $V \cap \Gamma$ is Zariski dense in V then V is a finite union of Γ-special varieties.

Remark

The Mordell-Lang conjecture for abelian varieties, combined with the Mordell-Weil theorem, implies the Mordell conjecture, namely, a curve of genus ≥ 2 defined over \mathbb{Q} has only finitely many rational points.

The Mordell-Lang conjecture for semi-abelian varieties was proven in a series of papers by Faltings, Vojta, Hindry, McQuillan, Raynaud, Laurent.

Weak CIT for 「-special varieties

Theorem (A., 2019)

Let $\Gamma \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be a subgroup of finite rank. Then every subvariety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ contains only finitely many maximal Γ-atypical subvarieties.

Theorem (A., 2019)

Let $\Gamma \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be a subgroup of finite rank. Then for every subvariety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ there is a finite collection Σ of proper Γ-special subvarieties of $\left(\mathbb{C}^{\times}\right)^{n}$ such that every Γ-atypical subvariety of V is contained in some $T \in \Sigma$.

Sketch of proof

Lemma

Let $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be an algebraic torus and $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be an irreducible algebraic subvariety. Then the set

$$
C:=C_{T}:=\left\{c \in\left(\mathbb{C}^{\times}\right)^{n}: V \cap c T \text { is atypical in }\left(\mathbb{C}^{\times}\right)^{n}\right\}
$$

is a proper Zariski closed subset of $\left(\mathbb{C}^{\times}\right)^{n}$.

Proof.

For every $c \in\left(\mathbb{C}^{\times}\right)^{n}$ obviously $\operatorname{dim} c T=\operatorname{dim} T$. Hence

$$
C=\left\{c \in\left(\mathbb{C}^{\times}\right)^{n}: \operatorname{dim}(V \cap c T) \geq \operatorname{dim} V+\operatorname{dim} T-n+1\right\}
$$

which is Zariski closed in $\left(\mathbb{C}^{\times}\right)^{n}$.
One can show that a "generic" coset intersects V typically, hence $C \subsetneq\left(\mathbb{C}^{\times}\right)^{n}$.

Sketch of proof (continued)

- We may assume V is irreducible.
- Let Σ_{0} be the finite collection of algebraic subtori of $\left(\mathbb{C}^{\times}\right)^{n}$ given by Weak CIT.
- Pick a Γ-atypical subvariety X of V. Then $X \subseteq b T$ for some b and some $T \in \Sigma_{0}$.
- $b T \cap \Gamma \neq \emptyset$, hence $b T=\gamma T$ for some $\gamma \in \Gamma$.
- It can be shown that $V \cap \gamma T$ is atypical, hence $\gamma \in C_{T}$.
- Let Δ_{T} be the finite set of maximal Γ-special subvarieties of C_{T}. Observe that Δ_{T} consists of Γ-cosets of T.
- Then $\gamma \in A \in \Delta_{T}$ for some A.
- Therefore $X \subseteq \gamma T \subseteq A T=A$.
- Then $\Sigma=\bigcup_{T \in \Sigma_{0}} \Delta_{T}$ works.

Generalisations

- The same can be done for semi-abelian varieties.
- More generally, we can work inside a (Γ-) special variety S, define atypicality with respect to S and obtain analogous results in that setting. A component X of an intersection $V \cap T$, where $V, T \subseteq S$, is atypical in S, if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} T-\operatorname{dim} S
$$

- The modular j-function satisfies some functional equations that can be used to define special varieties, pose a modular analogue of CIT (which is a special case of the general Zilber-Pink conjecture), and prove similar weak statements there. There is a modular Mordell-Lang due to Habegger and Pila (2012), and an Ax-Schanuel for j due to Pila and Tsimerman (2015).
- All aforementioned results are also true uniformly in parametric families.

