A remark on unlikely intersections

Vahagn Aslanyan

University of East Anglia

25 May 2022

Vahagn Aslanyan (UEA)

• Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.

Image: A math the second se

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

(a) < (a)

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

• A famous example is Faltings's theorem (the Mordell conjecture) stating that certain Diophantine equations have only finitely many rational solutions.

- Diophantine geometry is a branch of number theory studying integral or rational solutions of polynomial equations (Diophantine equations) using geometric tools.
- For example, rational solutions to the equation $x^2 + y^2 = 1$ can be interpreted as rational points on the unit circle.

• A famous example is Faltings's theorem (the Mordell conjecture) stating that certain Diophantine equations have only finitely many rational solutions. For instance, the equation $x^4 + y^4 = 1$ has only finitely many rational solutions.

・ロト ・ 日 ・ ・ ヨ ・ ・

• We are often interested in special solutions of polynomial equations.

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers z ∈ C for which zⁿ = 1 for some n > 0 (e.g. i⁴ = 1). These are the images of rational numbers under the function e^{2πiz}. Indeed, (e^{2πi⋅m/n})ⁿ = (e^{2πi})^m = 1.

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers z ∈ C for which zⁿ = 1 for some n > 0 (e.g. i⁴ = 1). These are the images of rational numbers under the function e^{2πiz}. Indeed, (e^{2πi⋅m/n})ⁿ = (e^{2πi})^m = 1.
- The equation x + y = 2 has only finitely many solutions with x, y roots of unity. In fact, the only solution is x = y = 1.

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers z ∈ C for which zⁿ = 1 for some n > 0 (e.g. i⁴ = 1). These are the images of rational numbers under the function e^{2πiz}. Indeed, (e^{2πi⋅m/n})ⁿ = (e^{2πi})^m = 1.
- The equation x + y = 2 has only finitely many solutions with x, y roots of unity. In fact, the only solution is x = y = 1.
- But x²y = 1 has infinitely many special solutions. If x = ζ is any root of unity then so is y = ζ⁻².

(日) (同) (日) (日) (日)

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers z ∈ C for which zⁿ = 1 for some n > 0 (e.g. i⁴ = 1). These are the images of rational numbers under the function e^{2πiz}. Indeed, (e^{2πi⋅m/n})ⁿ = (e^{2πi})^m = 1.
- The equation x + y = 2 has only finitely many solutions with x, y roots of unity. In fact, the only solution is x = y = 1.
- But x²y = 1 has infinitely many special solutions. If x = ζ is any root of unity then so is y = ζ⁻².
- S. Lang asked the following question in the 1960s. Assume f(x, y) = 0 contains infinitely many points (ξ, η) whose coordinates are roots of unity (f is an irreducible polynomial). What can be said about f?

< □ > < □ > < □ > < □ > < □ >

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers z ∈ C for which zⁿ = 1 for some n > 0 (e.g. i⁴ = 1). These are the images of rational numbers under the function e^{2πiz}. Indeed, (e^{2πi⋅m/n})ⁿ = (e^{2πi})^m = 1.
- The equation x + y = 2 has only finitely many solutions with x, y roots of unity. In fact, the only solution is x = y = 1.
- But x²y = 1 has infinitely many special solutions. If x = ζ is any root of unity then so is y = ζ⁻².
- S. Lang asked the following question in the 1960s. Assume f(x, y) = 0 contains infinitely many points (ξ, η) whose coordinates are roots of unity (f is an irreducible polynomial). What can be said about f? It turns out that up to multiplication by a constant f must be of the form $x^m y^n \zeta$ where $m, n \in \mathbb{Z}$ and ζ is a root of unity.

イロト イヨト イヨト イヨト

- We are often interested in special solutions of polynomial equations.
- Examples of special points are roots of unity, i.e. numbers z ∈ C for which zⁿ = 1 for some n > 0 (e.g. i⁴ = 1). These are the images of rational numbers under the function e^{2πiz}. Indeed, (e^{2πi⋅m/n})ⁿ = (e^{2πi})^m = 1.
- The equation x + y = 2 has only finitely many solutions with x, y roots of unity. In fact, the only solution is x = y = 1.
- But x²y = 1 has infinitely many special solutions. If x = ζ is any root of unity then so is y = ζ⁻².
- S. Lang asked the following question in the 1960s. Assume f(x, y) = 0 contains infinitely many points (ξ, η) whose coordinates are roots of unity (f is an irreducible polynomial). What can be said about f? It turns out that up to multiplication by a constant f must be of the form $x^m y^n \zeta$ where $m, n \in \mathbb{Z}$ and ζ is a root of unity.
- In other words, if a curve contains infinitely many points with special coordinates, then it must be of a special form.

<ロト < 回ト < 回ト < 回ト < 回ト</p>

• An *algebraic variety* is a subset of \mathbb{C}^n defined by several polynomial equations.

Image: A math the second se

• An algebraic variety is a subset of \mathbb{C}^n defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^3 .

- An algebraic variety is a subset of \mathbb{C}^n defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^3 .
- For example, the set

$$\{(x, y, z) \in \mathbb{C}^3 : x^3 z^2 + y^3 - z^3 - 1 = 0, \ x^2 + y^2 + x z^4 = 0\}$$

is an algebraic variety.

- An algebraic variety is a subset of \mathbb{C}^n defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^3 .
- For example, the set

$$\{(x, y, z) \in \mathbb{C}^3 : x^3 z^2 + y^3 - z^3 - 1 = 0, \ x^2 + y^2 + x z^4 = 0\}$$

is an algebraic variety.

• An algebraic variety V is *irreducible* if it cannot be decomposed into a union of two proper algebraic subvarieties.

- An algebraic variety is a subset of \mathbb{C}^n defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^3 .
- For example, the set

$$\{(x, y, z) \in \mathbb{C}^3 : x^3 z^2 + y^3 - z^3 - 1 = 0, \ x^2 + y^2 + x z^4 = 0\}$$

is an algebraic variety.

An algebraic variety V is *irreducible* if it cannot be decomposed into a union of two proper algebraic subvarieties. For instance, in C² the variety x² + y² = 1 is irreducible but x² + y² = 0 is reducible (it is the union of the lines x = iy and x = -iy).

Image: A math the second se

- An algebraic variety is a subset of \mathbb{C}^n defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^3 .
- For example, the set

$$\{(x, y, z) \in \mathbb{C}^3 : x^3 z^2 + y^3 - z^3 - 1 = 0, \ x^2 + y^2 + x z^4 = 0\}$$

is an algebraic variety.

- An algebraic variety V is *irreducible* if it cannot be decomposed into a union of two proper algebraic subvarieties. For instance, in C² the variety x² + y² = 1 is irreducible but x² + y² = 0 is reducible (it is the union of the lines x = iy and x = -iy).
- If f(X, Y, Z) ∈ C[X, Y, Z] is an irreducible polynomial then f(x, y, z) = 0 defines an irreducible (hyper)surface.

(a) < (a)

- An algebraic variety is a subset of \mathbb{C}^n defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^3 .
- For example, the set

$$\{(x, y, z) \in \mathbb{C}^3 : x^3 z^2 + y^3 - z^3 - 1 = 0, \ x^2 + y^2 + x z^4 = 0\}$$

is an algebraic variety.

- An algebraic variety V is *irreducible* if it cannot be decomposed into a union of two proper algebraic subvarieties. For instance, in C² the variety x² + y² = 1 is irreducible but x² + y² = 0 is reducible (it is the union of the lines x = iy and x = -iy).
- If $f(X, Y, Z) \in \mathbb{C}[X, Y, Z]$ is an irreducible polynomial then f(x, y, z) = 0 defines an irreducible (hyper)surface.
- Every algebraic variety can be decomposed into a finite union of irreducible components.

イロト イヨト イヨト イヨト

- An algebraic variety is a subset of \mathbb{C}^n defined by several polynomial equations. Throughout the talk we may assume $n \leq 3$ and will let x, y, z denote the coordinates on \mathbb{C}^3 .
- For example, the set

$$\{(x, y, z) \in \mathbb{C}^3 : x^3 z^2 + y^3 - z^3 - 1 = 0, \ x^2 + y^2 + xz^4 = 0\}$$

is an algebraic variety.

- An algebraic variety V is *irreducible* if it cannot be decomposed into a union of two proper algebraic subvarieties. For instance, in C² the variety x² + y² = 1 is irreducible but x² + y² = 0 is reducible (it is the union of the lines x = iy and x = -iy).
- If f(X, Y, Z) ∈ C[X, Y, Z] is an irreducible polynomial then f(x, y, z) = 0 defines an irreducible (hyper)surface.
- Every algebraic variety can be decomposed into a finite union of irreducible components.
- $\bullet\,$ The set $\mathbb{C}^{\times}:=\mathbb{C}\setminus\{0\}$ can be identified with the variety

$$\{(x,y)\in\mathbb{C}^2:xy=1\}\subseteq\mathbb{C}^2.$$

• dim V is the maximal length d of chains $V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_d \subseteq V$ of irreducible subvarieties.

メロト メロト メヨト メ

- dim V is the maximal length d of chains $V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_d \subseteq V$ of irreducible subvarieties.
- dim $\mathbb{C}^n = \dim(\mathbb{C}^{\times})^n = n$.

メロト メロト メヨト メヨ

Dimension

- dim V is the maximal length d of chains $V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_d \subseteq V$ of irreducible subvarieties.
- dim $\mathbb{C}^n = \dim(\mathbb{C}^{\times})^n = n$.
- dim V = 0 if and only if V is finite.

・ロト ・回ト ・ヨト ・

Dimension

- dim V is the maximal length d of chains $V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_d \subseteq V$ of irreducible subvarieties.
- dim $\mathbb{C}^n = \dim(\mathbb{C}^{\times})^n = n$.
- dim V = 0 if and only if V is finite.
- If $V \subseteq \mathbb{C}^n$ is defined by t independent equations, then we expect its dimension to be n t. For instance, if V is defined by a single non-constant polynomial (it is a hypersurface), then it has dimension n 1.

< □ > < 同 > < 回 > < Ξ > < Ξ

Dimension

- dim V is the maximal length d of chains $V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_d \subseteq V$ of irreducible subvarieties.
- dim $\mathbb{C}^n = \dim(\mathbb{C}^{\times})^n = n$.
- dim V = 0 if and only if V is finite.
- If $V \subseteq \mathbb{C}^n$ is defined by t independent equations, then we expect its dimension to be n t. For instance, if V is defined by a single non-constant polynomial (it is a hypersurface), then it has dimension n 1. For instance, the equation x = y defines a 1-dimensional variety in \mathbb{C}^2 and a 2-dimensional variety in \mathbb{C}^3 .

< □ > < 同 > < 回 > < Ξ > < Ξ

- dim V is the maximal length d of chains $V_0 \subsetneq V_1 \subsetneq \ldots \subsetneq V_d \subseteq V$ of irreducible subvarieties.
- dim $\mathbb{C}^n = \dim(\mathbb{C}^{\times})^n = n$.
- dim V = 0 if and only if V is finite.
- If $V \subseteq \mathbb{C}^n$ is defined by t independent equations, then we expect its dimension to be n t. For instance, if V is defined by a single non-constant polynomial (it is a hypersurface), then it has dimension n 1. For instance, the equation x = y defines a 1-dimensional variety in \mathbb{C}^2 and a 2-dimensional variety in \mathbb{C}^3 .
- The variety defined by three equations $x^2 y^2 = 1$, $x^2 z^2 = 1$, x(y z) = 0 has dimension 1 in \mathbb{C}^3 .

(日) (同) (日) (日)

Let (C[×]; ·, 1) be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case (x, y) → xy).

Image: A math the second se

Let (C[×]; ·, 1) be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case (x, y) → xy). For any n ∈ N the Cartesian power (C[×])ⁿ is also a group under coordinate-wise multiplication.

Image: A math the second se

- Let (C[×]; ·, 1) be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case (x, y) → xy). For any n ∈ N the Cartesian power (C[×])ⁿ is also a group under coordinate-wise multiplication.
- A subvariety T ⊆ (C[×])ⁿ is called an *algebraic torus* if it is irreducible and is a subgroup of (C[×])ⁿ.

- Let (C[×]; ·, 1) be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case (x, y) → xy). For any n ∈ N the Cartesian power (C[×])ⁿ is also a group under coordinate-wise multiplication.
- A subvariety T ⊆ (C[×])ⁿ is called an *algebraic torus* if it is irreducible and is a subgroup of (C[×])ⁿ.
- For example, the variety $x^5yz^2 = 1$ is an algebraic torus, for if $x_1^5y_1z_1^2 = 1$ and $x_2^5y_2z_2^2 = 1$ then $(x_1x_2)^5 \cdot (y_1y_2) \cdot (z_1z_2)^2 = 1$.

- Let (C[×]; ·, 1) be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case (x, y) → xy). For any n ∈ N the Cartesian power (C[×])ⁿ is also a group under coordinate-wise multiplication.
- A subvariety T ⊆ (C[×])ⁿ is called an *algebraic torus* if it is irreducible and is a subgroup of (C[×])ⁿ.
- For example, the variety $x^5yz^2 = 1$ is an algebraic torus, for if $x_1^5y_1z_1^2 = 1$ and $x_2^5y_2z_2^2 = 1$ then $(x_1x_2)^5 \cdot (y_1y_2) \cdot (z_1z_2)^2 = 1$.
- An algebraic torus is defined by (several) multiplicative equations as above.

Image: A math the second se

- Let (C[×]; ·, 1) be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case (x, y) → xy). For any n ∈ N the Cartesian power (C[×])ⁿ is also a group under coordinate-wise multiplication.
- A subvariety T ⊆ (C[×])ⁿ is called an *algebraic torus* if it is irreducible and is a subgroup of (C[×])ⁿ.
- For example, the variety $x^5yz^2 = 1$ is an algebraic torus, for if $x_1^5y_1z_1^2 = 1$ and $x_2^5y_2z_2^2 = 1$ then $(x_1x_2)^5 \cdot (y_1y_2) \cdot (z_1z_2)^2 = 1$.
- An algebraic torus is defined by (several) multiplicative equations as above.
- Torsion cosets of tori, that is, sets of the form ζ · T where T ⊆(ℂ[×])ⁿ is a torus and the coordinates of ζ are roots of unity, are known as special varieties.

(a) < (a)

- Let (C[×]; ·, 1) be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case (x, y) → xy). For any n ∈ N the Cartesian power (C[×])ⁿ is also a group under coordinate-wise multiplication.
- A subvariety T ⊆ (C[×])ⁿ is called an *algebraic torus* if it is irreducible and is a subgroup of (C[×])ⁿ.
- For example, the variety $x^5yz^2 = 1$ is an algebraic torus, for if $x_1^5y_1z_1^2 = 1$ and $x_2^5y_2z_2^2 = 1$ then $(x_1x_2)^5 \cdot (y_1y_2) \cdot (z_1z_2)^2 = 1$.
- An algebraic torus is defined by (several) multiplicative equations as above.
- Torsion cosets of tori, that is, sets of the form ζ · T where T ⊆(ℂ[×])ⁿ is a torus and the coordinates of ζ are roots of unity, are known as special varieties. For example, x⁵yz³ = i is special.

(a) < (a)

- Let (C[×]; ·, 1) be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case (x, y) → xy). For any n ∈ N the Cartesian power (C[×])ⁿ is also a group under coordinate-wise multiplication.
- A subvariety T ⊆ (C[×])ⁿ is called an *algebraic torus* if it is irreducible and is a subgroup of (C[×])ⁿ.
- For example, the variety $x^5yz^2 = 1$ is an algebraic torus, for if $x_1^5y_1z_1^2 = 1$ and $x_2^5y_2z_2^2 = 1$ then $(x_1x_2)^5 \cdot (y_1y_2) \cdot (z_1z_2)^2 = 1$.
- An algebraic torus is defined by (several) multiplicative equations as above.
- Torsion cosets of tori, that is, sets of the form ζ · T where T ⊆(ℂ[×])ⁿ is a torus and the coordinates of ζ are roots of unity, are known as special varieties. For example, x⁵yz³ = i is special.
- Special varieties contain infinitely many special points.

< □ > < □ > < □ > < □ > < □ >

- Let (C[×]; ·, 1) be the multiplicative group of non-zero complex numbers. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map (in this case (x, y) → xy). For any n ∈ N the Cartesian power (C[×])ⁿ is also a group under coordinate-wise multiplication.
- A subvariety T ⊆ (C[×])ⁿ is called an *algebraic torus* if it is irreducible and is a subgroup of (C[×])ⁿ.
- For example, the variety $x^5yz^2 = 1$ is an algebraic torus, for if $x_1^5y_1z_1^2 = 1$ and $x_2^5y_2z_2^2 = 1$ then $(x_1x_2)^5 \cdot (y_1y_2) \cdot (z_1z_2)^2 = 1$.
- An algebraic torus is defined by (several) multiplicative equations as above.
- Torsion cosets of tori, that is, sets of the form ζ · T where T ⊆(C[×])ⁿ is a torus and the coordinates of ζ are roots of unity, are known as special varieties. For example, x⁵yz³ = i is special.
- Special varieties contain infinitely many special points. If an irreducible curve contains infinitely many special points, then it must be special.

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Theorem (Manin-Mumford for tori; Raynaud, Hindry)

Let $V \subseteq (\mathbb{C}^{\times})^n$ be an algebraic variety. Then V contains only finitely many maximal special subvarieties.

Theorem (Manin-Mumford for tori; Raynaud, Hindry)

Let $V \subseteq (\mathbb{C}^{\times})^n$ be an algebraic variety. Then V contains only finitely many maximal special subvarieties.

• If V is an irreducible curve then either it is special or it contains only finitely many special points.

Theorem (Manin-Mumford for tori; Raynaud, Hindry)

Let $V \subseteq (\mathbb{C}^{\times})^n$ be an algebraic variety. Then V contains only finitely many maximal special subvarieties.

- If V is an irreducible curve then either it is special or it contains only finitely many special points.
- If V is irreducible and contains a "Zariski dense" set of special points (too many special points) then V is special.

• Given two varieties V and W in \mathbb{C}^n , one expects

 $\dim(V \cap W) = \dim V + \dim W - n.$

・ロト ・日下・ ・ ヨト・

• Given two varieties V and W in \mathbb{C}^n , one expects

 $\dim(V \cap W) = \dim V + \dim W - n.$

• Suppose V is defined by t equations and W is defined by s equations. Then $V \cap W$ is defined by t + s equations, so we expect

dim V = n-t, dim W = n-s, dim $(V \cap W) = n-(s+t) = (n-t)+(n-s)-n$.

• Given two varieties V and W in \mathbb{C}^n , one expects

 $\dim(V \cap W) = \dim V + \dim W - n.$

• Suppose V is defined by t equations and W is defined by s equations. Then $V \cap W$ is defined by t + s equations, so we expect

dim V = n-t, dim W = n-s, dim $(V \cap W) = n-(s+t) = (n-t)+(n-s)-n$.

• Two curves in a two-dimensional space are likely to intersect, while two curves in a three-dimensional space are not. If they do intersect, then we have an unlikely intersection.

(日) (同) (日) (日)

• Given two varieties V and W in \mathbb{C}^n , one expects

 $\dim(V \cap W) = \dim V + \dim W - n.$

• Suppose V is defined by t equations and W is defined by s equations. Then $V \cap W$ is defined by t + s equations, so we expect

dim V = n-t, dim W = n-s, dim $(V \cap W) = n-(s+t) = (n-t)+(n-s)-n$.

• Two curves in a two-dimensional space are likely to intersect, while two curves in a three-dimensional space are not. If they do intersect, then we have an unlikely intersection.

Theorem

Let $V, W \subseteq \mathbb{C}^n$ be irreducible algebraic varieties and $X \subseteq V \cap W$ be an irreducible component of the intersection. Then

 $\dim X \geq \dim V + \dim W - n.$

< □ > < 同 > < 回 > < Ξ > < Ξ

• Given two varieties V and W in \mathbb{C}^n , one expects

 $\dim(V \cap W) = \dim V + \dim W - n.$

• Suppose V is defined by t equations and W is defined by s equations. Then $V \cap W$ is defined by t + s equations, so we expect

dim V = n-t, dim W = n-s, dim $(V \cap W) = n-(s+t) = (n-t)+(n-s)-n$.

• Two curves in a two-dimensional space are likely to intersect, while two curves in a three-dimensional space are not. If they do intersect, then we have an unlikely intersection.

Theorem

Let $V, W \subseteq \mathbb{C}^n$ be irreducible algebraic varieties and $X \subseteq V \cap W$ be an irreducible component of the intersection. Then

 $\dim X \geq \dim V + \dim W - n.$

Definition

X is an atypical component of $V \cap W$ if dim $X > \dim V + \dim W - n$.

Definition

Torsion cosets of tori are special varieties. These are defined by equations of the form $x^a y^b z^c = \zeta$ where ζ is a root of unity.

Definition

Torsion cosets of tori are special varieties. These are defined by equations of the form $x^a y^b z^c = \zeta$ where ζ is a root of unity.

Definition

For a variety $V \subseteq (\mathbb{C}^{\times})^n$ and a special variety $S \subseteq (\mathbb{C}^{\times})^n$, a component X of the intersection $V \cap S$ is an atypical subvariety of V if

 $\dim X > \dim V + \dim S - n.$

Definition

Torsion cosets of tori are special varieties. These are defined by equations of the form $x^a y^b z^c = \zeta$ where ζ is a root of unity.

Definition

For a variety $V \subseteq (\mathbb{C}^{\times})^n$ and a special variety $S \subseteq (\mathbb{C}^{\times})^n$, a component X of the intersection $V \cap S$ is an atypical subvariety of V if

$$\dim X > \dim V + \dim S - n.$$

Remark

If $T \subseteq V \subsetneq (\mathbb{C}^{\times})^n$ and T is special then it is an atypical subvariety of V, for

```
\dim T > \dim V + \dim T - n.
```

(日) (同) (日) (日)

Definition

Torsion cosets of tori are special varieties. These are defined by equations of the form $x^a y^b z^c = \zeta$ where ζ is a root of unity.

Definition

For a variety $V \subseteq (\mathbb{C}^{\times})^n$ and a special variety $S \subseteq (\mathbb{C}^{\times})^n$, a component X of the intersection $V \cap S$ is an atypical subvariety of V if

$$\dim X > \dim V + \dim S - n.$$

Remark

If $T \subseteq V \subsetneq (\mathbb{C}^{\times})^n$ and T is special then it is an atypical subvariety of V, for

$$\dim T > \dim V + \dim T - n.$$

For example, if $V \subseteq (\mathbb{C}^{\times})^2$ is defined by the equation $xy + x^2y^3 = i + 1$ then it contains the special variety defined by the equations $xy = i, x^2y^3 = 1$.

Vahagn Aslanyan (UEA)

Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in $(\mathbb{C}^{\times})^n$ contains only finitely many maximal atypical subvarieties.

Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in $(\mathbb{C}^{\times})^n$ contains only finitely many maximal atypical subvarieties.

Conjecture (CIT)

Let $V \subseteq (\mathbb{C}^{\times})^n$ be an algebraic variety. Then there is a finite collection Σ of proper special subvarieties of $(\mathbb{C}^{\times})^n$ such that every atypical subvariety X of V is contained in some $T \in \Sigma$.

Image: A math the second se

Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in $(\mathbb{C}^{\times})^n$ contains only finitely many maximal atypical subvarieties.

Conjecture (CIT)

Let $V \subseteq (\mathbb{C}^{\times})^n$ be an algebraic variety. Then there is a finite collection Σ of proper special subvarieties of $(\mathbb{C}^{\times})^n$ such that every atypical subvariety X of V is contained in some $T \in \Sigma$.

Theorem (Weak CIT; Zilber, Bombieri-Masser-Zannier, Kirby

Let V be an algebraic subvariety of $(\mathbb{C}^{\times})^n$. Then there is a finite collection Σ of proper algebraic subtori of $(\mathbb{C}^{\times})^n$ such that every atypical subvariety of V is contained in a (not necessarily torsion) coset of some $T \in \Sigma$.

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Definition

• Arbitrary cosets of algebraic tori are called weakly special varieties.

Definition

- Arbitrary cosets of algebraic tori are called weakly special varieties.
- Let X ⊆(C[×])ⁿ. The weakly special closure of X is the smallest weakly special subvariety containing X.

Definition

- Arbitrary cosets of algebraic tori are called weakly special varieties.
- Let X ⊆(C[×])ⁿ. The weakly special closure of X is the smallest weakly special subvariety containing X.

Theorem (A., 2019)

For every variety $V \subseteq (\mathbb{C}^{\times})^n$ there is a finite collection Σ of proper special subvarieties of $(\mathbb{C}^{\times})^n$ such that every atypical subvariety of V, whose weakly special closures is special, is contained in some $T \in \Sigma$.

Definition

- Arbitrary cosets of algebraic tori are called weakly special varieties.
- Let X ⊆(C[×])ⁿ. The weakly special closure of X is the smallest weakly special subvariety containing X.

Theorem (A., 2019)

For every variety $V \subseteq (\mathbb{C}^{\times})^n$ there is a finite collection Σ of proper special subvarieties of $(\mathbb{C}^{\times})^n$ such that every atypical subvariety of V, whose weakly special closures is special, is contained in some $T \in \Sigma$.

Theorem (A., 2019)

Every variety $V \subseteq (\mathbb{C}^{\times})^n$ contains only finitely many maximal atypical subvarieties whose weakly special closures are special.

イロト イポト イヨト イヨ

Definition

- Arbitrary cosets of algebraic tori are called weakly special varieties.
- Let X ⊆(C[×])ⁿ. The weakly special closure of X is the smallest weakly special subvariety containing X.

Theorem (A., 2019)

For every variety $V \subseteq (\mathbb{C}^{\times})^n$ there is a finite collection Σ of proper special subvarieties of $(\mathbb{C}^{\times})^n$ such that every atypical subvariety of V, whose weakly special closures is special, is contained in some $T \in \Sigma$.

Theorem (A., 2019)

Every variety $V \subseteq (\mathbb{C}^{\times})^n$ contains only finitely many maximal atypical subvarieties whose weakly special closures are special.

The proof combines weak CIT with Manin-Mumford.

Thank you

э

メロト メロト メヨト メ

Definition

Let $\Gamma \subseteq (\mathbb{C}^{\times})^n$ be a subgroup of finite rank.

- A Γ-special subvariety of (C[×])ⁿ is a translate of a torus by an element of Γ, i.e. a coset γT where T is a torus and γ ∈ Γ.
- For an algebraic variety V ⊆ (C[×])ⁿ, an atypical component X of an intersection V ∩ S, where S ⊆ (C[×])ⁿ is Γ-special, is called Γ-*atypical* if every coset of a subtorus of (C[×])ⁿ containing X is Γ-special, i.e. contains a point of Γ. For example, if X ∩ Γ ≠ Ø then X is Γ-atypical.

Theorem (Mordell-Lang for $(\mathbb{C}^{\times})^n$; Laurent)

Let $\Gamma \subseteq (\mathbb{C}^{\times})^n$ be a subgroup of finite rank. Then an algebraic variety $V \subseteq (\mathbb{C}^{\times})^n$ contains only finitely many maximal Γ -special subvarieties.

Theorem

If $V \cap \Gamma$ is Zariski dense in V then V is a finite union of Γ -special varieties.

Remark

The Mordell-Lang conjecture for abelian varieties, combined with the Mordell-Weil theorem, implies the Mordell conjecture, namely, a curve of genus ≥ 2 defined over \mathbb{Q} has only finitely many rational points.

The Mordell-Lang conjecture for semi-abelian varieties was proven in a series of papers by Faltings, Vojta, Hindry, McQuillan, Raynaud, Laurent.

イロト イヨト イヨト イ

Theorem (A., 2019)

Let $\Gamma \subseteq (\mathbb{C}^{\times})^n$ be a subgroup of finite rank. Then every subvariety $V \subseteq (\mathbb{C}^{\times})^n$ contains only finitely many maximal Γ -atypical subvarieties.

Theorem (A., 2019)

Let $\Gamma \subseteq (\mathbb{C}^{\times})^n$ be a subgroup of finite rank. Then for every subvariety $V \subseteq (\mathbb{C}^{\times})^n$ there is a finite collection Σ of proper Γ -special subvarieties of $(\mathbb{C}^{\times})^n$ such that every Γ -atypical subvariety of V is contained in some $T \in \Sigma$.

Sketch of proof

Lemma

Let $T \subseteq (\mathbb{C}^{\times})^n$ be an algebraic torus and $V \subseteq (\mathbb{C}^{\times})^n$ be an irreducible algebraic subvariety. Then the set

$$\mathcal{C} := \mathcal{C}_{\mathcal{T}} := \{ c \in (\mathbb{C}^{\times})^n : V \cap c\mathcal{T} \text{ is atypical in } (\mathbb{C}^{\times})^n \}$$

is a proper Zariski closed subset of $(\mathbb{C}^{\times})^n$.

Proof.

For every $c \in (\mathbb{C}^{\times})^n$ obviously dim $cT = \dim T$. Hence

 $C = \{c \in (\mathbb{C}^{\times})^n : \dim(V \cap cT) \ge \dim V + \dim T - n + 1\}$

which is Zariski closed in $(\mathbb{C}^{\times})^n$. One can show that a "generic" coset intersects V typically, hence $C \subsetneq (\mathbb{C}^{\times})^n$. \Box

イロト イヨト イヨト イヨ

Sketch of proof (continued)

- We may assume V is irreducible.
- Let Σ_0 be the finite collection of algebraic subtori of $(\mathbb{C}^\times)^n$ given by Weak CIT.
- Pick a Γ -atypical subvariety X of V. Then $X \subseteq bT$ for some b and some $T \in \Sigma_0$.
- $bT \cap \Gamma \neq \emptyset$, hence $bT = \gamma T$ for some $\gamma \in \Gamma$.
- It can be shown that $V \cap \gamma T$ is atypical, hence $\gamma \in C_T$.
- Let Δ_T be the finite set of maximal Γ-special subvarieties of C_T. Observe that Δ_T consists of Γ-cosets of T.
- Then $\gamma \in A \in \Delta_T$ for some A.
- Therefore $X \subseteq \gamma T \subseteq AT = A$.
- Then $\Sigma = \bigcup_{\mathcal{T} \in \Sigma_0} \Delta_{\mathcal{T}}$ works.

Generalisations

- The same can be done for semi-abelian varieties.
- More generally, we can work inside a $(\Gamma$ -)special variety S, define atypicality with respect to S and obtain analogous results in that setting. A component X of an intersection $V \cap T$, where $V, T \subseteq S$, is *atypical in* S, if

 $\dim X > \dim V + \dim T - \dim S.$

- The modular *j*-function satisfies some functional equations that can be used to define special varieties, pose a modular analogue of CIT (which is a special case of the general Zilber-Pink conjecture), and prove similar weak statements there. There is a modular Mordell-Lang due to Habegger and Pila (2012), and an Ax-Schanuel for *j* due to Pila and Tsimerman (2015).
- All aforementioned results are also true uniformly in parametric families.

イロト イロト イヨト イヨ