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Diophantine geometry

@ Diophantine geometry is a branch of number theory studying integral or
rational solutions of polynomial equations (Diophantine equations) using
geometric tools.
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Diophantine geometry

@ Diophantine geometry is a branch of number theory studying integral or
rational solutions of polynomial equations (Diophantine equations) using
geometric tools.

o For example, rational solutions to the equation x> + y? = 1 can be
interpreted as rational points on the unit circle.

o A famous example is Faltings's theorem (the Mordell conjecture) stating that
certain Diophantine equations have only finitely many rational solutions.
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Diophantine geometry

@ Diophantine geometry is a branch of number theory studying integral or
rational solutions of polynomial equations (Diophantine equations) using
geometric tools.

o For example, rational solutions to the equation x> + y? = 1 can be
interpreted as rational points on the unit circle.

o A famous example is Faltings's theorem (the Mordell conjecture) stating that
certain Diophantine equations have only finitely many rational solutions. For
instance, the equation x* + y* = 1 has only finitely many rational solutions.
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Diophantine geometry (continued)

@ We are often interested in special solutions of polynomial equations.
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Diophantine geometry (continued)

@ We are often interested in special solutions of polynomial equations.

o Examples of special points are roots of unity, i.e. numbers z € C for which
z" =1 for some n > 0 (e.g. i* =1). These are the images of rational
numbers under the function €2, Indeed, (e2™"%)" = (€)™ = 1.
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Diophantine geometry (continued)

@ We are often interested in special solutions of polynomial equations.

@ Examples of special points are roots of unity, i.e. numbers z € C for which
z" =1 for some n > 0 (e.g. i* =1). These are the images of rational
numbers under the function €™, Indeed, (e27”‘%)n = (e?™)m = 1.

@ The equation x + y = 2 has only finitely many solutions with x, y roots of
unity. In fact, the only solution is x = y = 1.
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@ We are often interested in special solutions of polynomial equations.

@ Examples of special points are roots of unity, i.e. numbers z € C for which
z" =1 for some n > 0 (e.g. i* =1). These are the images of rational
numbers under the function €™, Indeed, (ezm‘%)n = (e?™)m = 1.

@ The equation x + y = 2 has only finitely many solutions with x, y roots of
unity. In fact, the only solution is x =y = 1.

@ But x2y = 1 has infinitely many special solutions. If x = ( is any root of
unity then so is y = (2.

@ S. Lang asked the following question in the 1960s. Assume f(x,y) =0
contains infinitely many points (£,7) whose coordinates are roots of unity (f
is an irreducible polynomial). What can be said about f?
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@ We are often interested in special solutions of polynomial equations.

@ Examples of special points are roots of unity, i.e. numbers z € C for which
z" =1 for some n > 0 (e.g. i* =1). These are the images of rational
numbers under the function €™, Indeed, (ezmg)" = (e?™)m = 1.

@ The equation x + y = 2 has only finitely many solutions with x, y roots of
unity. In fact, the only solution is x = y = 1.

@ But x2y = 1 has infinitely many special solutions. If x = ( is any root of
unity then so is y = (2.

@ S. Lang asked the following question in the 1960s. Assume f(x,y) =0
contains infinitely many points (£,7) whose coordinates are roots of unity (f
is an irreducible polynomial). What can be said about f7 It turns out that up
to multiplication by a constant f must be of the form x™y"” — ( where
m,n € Z and ( is a root of unity.
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Diophantine geometry (continued)

@ We are often interested in special solutions of polynomial equations.

@ Examples of special points are roots of unity, i.e. numbers z € C for which
z" =1 for some n > 0 (e.g. i* =1). These are the images of rational
numbers under the function e2™2. Indeed, (e27”‘%)n = (e?™)m = 1.

@ The equation x + y = 2 has only finitely many solutions with x, y roots of
unity. In fact, the only solution is x = y = 1.

@ But x2y = 1 has infinitely many special solutions. If x = ( is any root of
unity then so is y = (2.

@ S. Lang asked the following question in the 1960s. Assume f(x,y) =0
contains infinitely many points (£,7) whose coordinates are roots of unity (f
is an irreducible polynomial). What can be said about f7 It turns out that up
to multiplication by a constant f must be of the form x™y"” — ( where
m,n € Z and ( is a root of unity.

@ In other words, if a curve contains infinitely many points with special
coordinates, then it must be of a special form.
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Algebraic varieties

o An algebraic variety is a subset of C" defined by several polynomial
equations.
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equations. Throughout the talk we may assume n < 3 and will let x,y, z
denote the coordinates on C3.
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Algebraic varieties

o An algebraic variety is a subset of C" defined by several polynomial
equations. Throughout the talk we may assume n < 3 and will let x,y, z
denote the coordinates on C3.

o For example, the set
{(,3,2) €C* 322 4+ 22 —1=0, X* +y* + xz* = 0}

is an algebraic variety.
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o An algebraic variety is a subset of C" defined by several polynomial
equations. Throughout the talk we may assume n < 3 and will let x,y, z
denote the coordinates on C>.

o For example, the set
{(Xv.yvz) € (C3 :X322+y3_23_ 1 :O, X2+y2+X24:0}

is an algebraic variety.
@ An algebraic variety V is irreducible if it cannot be decomposed into a union
of two proper algebraic subvarieties.
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Algebraic varieties

o An algebraic variety is a subset of C" defined by several polynomial
equations. Throughout the talk we may assume n < 3 and will let x,y, z
denote the coordinates on C>.

o For example, the set
{(x,y,2) €C: P22 +y> — 22 - 1=0, x>+ y* + xz* =0}

is an algebraic variety.

@ An algebraic variety V is irreducible if it cannot be decomposed into a union
of two proper algebraic subvarieties For instance, in C? the variety
x? 4 y? = 1 is irreducible but x? + y? = 0 is reducible (it is the union of the
lines x = jy and x = —iy).
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o An algebraic variety is a subset of C" defined by several polynomial
equations. Throughout the talk we may assume n < 3 and will let x,y, z
denote the coordinates on C>.

o For example, the set
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o If f(X,Y,Z) e C[X,Y,Z]is an irreducible polynomial then f(x,y,z) =0
defines an irreducible (hyper)surface.
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Algebraic varieties

An algebraic variety is a subset of C" defined by several polynomial
equations. Throughout the talk we may assume n < 3 and will let x,y, z
denote the coordinates on C>.

For example, the set

{(X7y7z) 6(33:)(322_;'_}/3_23_1:0’ X2+y2+X24:0}

is an algebraic variety.

An algebraic variety V is irreducible if it cannot be decomposed into a union
of two proper algebraic subvarieties. For instance, in C? the variety

x? 4 y? = 1 is irreducible but x? + y? = 0 is reducible (it is the union of the
lines x = jy and x = —iy).

If f(X,Y,Z) eC[X,Y,Z]is an irreducible polynomial then f(x,y,z) =0
defines an irreducible (hyper)surface.

Every algebraic variety can be decomposed into a finite union of irreducible
components.

The set C* := C\ {0} can be identified with the variety
{(x,y) €C?: xy =1} C C%
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Dimension

o dim V is the maximal length d of chains Vo C V; C ... C V; C V of
irreducible subvarieties.
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Dimension

o dim V is the maximal length d of chains Vo C V; C ... C V; C V of
irreducible subvarieties.

e dimC" = dim(C*)" = n.
e dim V =0 if and only if V is finite.

o If V C C" is defined by t independent equations, then we expect its
dimension to be n — t. For instance, if V is defined by a single non-constant
polynomial (it is a hypersurface), then it has dimension n — 1.
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Dimension

o dim V is the maximal length d of chains Vo C V; C ... C V; C V of
irreducible subvarieties.

e dimC" = dim(C*)" = n.

e dim V =0 if and only if V is finite.

o If V C C" is defined by t independent equations, then we expect its
dimension to be n — t. For instance, if V is defined by a single non-constant
polynomial (it is a hypersurface), then it has dimension n — 1. For instance,
the equation x = y defines a 1-dimensional variety in C? and a 2-dimensional
variety in C3.

@ The variety defined by three equations
x2—y2=1, x> =22 =1, x(y — z) = 0 has dimension 1 in C3.
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Algebraic tori

o Let (C*;-,1) be the multiplicative group of non-zero complex numbers. It is
an algebraic group, i.e. an algebraic variety where the group operation is
given by a polynomial map (in this case (x,y) — xy).
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given by a polynomial map (in this case (x,y) — xy). For any n € N the
Cartesian power (C*)" is also a group under coordinate-wise multiplication.
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@ A subvariety T C (C*)" is called an algebraic torus if it is irreducible and is a
subgroup of (C*)".
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Algebraic tori

o Let (C*;-,1) be the multiplicative group of non-zero complex numbers. It is
an algebraic group, i.e. an algebraic variety where the group operation is
given by a polynomial map (in this case (x,y) — xy). For any n € N the
Cartesian power (C*)" is also a group under coordinate-wise multiplication.

@ A subvariety T C (C*)" is called an algebraic torus if it is irreducible and is a
subgroup of (C*)".

o For example, the variety x°yz2 = 1 is an algebraic torus, for if xPy;z? =1
and x3y»z2 = 1 then (x1x2)% - (y1y2) - (z122)? = 1.
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torus and the coordinates of { are roots of unity, are known as special
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Algebraic tori

o Let (C*;-,1) be the multiplicative group of non-zero complex numbers. It is
an algebraic group, i.e. an algebraic variety where the group operation is
given by a polynomial map (in this case (x,y) — xy). For any n € N the
Cartesian power (C*)" is also a group under coordinate-wise multiplication.

@ A subvariety T C (C*)" is called an algebraic torus if it is irreducible and is a
subgroup of (C*)".

o For example, the variety x°yz2 = 1 is an algebraic torus, for if xPy;z? =1
and x3y»z2 = 1 then (x1x2)% - (y1y2) - (z122)? = 1.

@ An algebraic torus is defined by (several) multiplicative equations as above.
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torus and the coordinates of { are roots of unity, are known as special
varieties. For example, x°yz3 = i is special.

Special varieties contain infinitely many special points.
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Algebraic tori

o Let (C*;-,1) be the multiplicative group of non-zero complex numbers. It is
an algebraic group, i.e. an algebraic variety where the group operation is
given by a polynomial map (in this case (x,y) — xy). For any n € N the
Cartesian power (C*)" is also a group under coordinate-wise multiplication.

@ A subvariety T C (C*)" is called an algebraic torus if it is irreducible and is a
subgroup of (C*)".

o For example, the variety x°yz2 = 1 is an algebraic torus, for if xPy;z? =1
and x3y»z2 = 1 then (x1x2)% - (y1y2) - (z122)? = 1.

@ An algebraic torus is defined by (several) multiplicative equations as above.

@ Torsion cosets of tori, that is, sets of the form (- T where T C(C*)" is a
torus and the coordinates of { are roots of unity, are known as special
varieties. For example, x®yz3 = i is special.

@ Special varieties contain infinitely many special points. If an irreducible curve
contains infinitely many special points, then it must be special.
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Manin-Mumford conjecture

Let V C(C*)" be an algebraic variety. Then V contains only finitely many
maximal special subvarieties.
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Manin-Mumford conjecture

Let V C(C*)" be an algebraic variety. Then V contains only finitely many
maximal special subvarieties.

o If V is an irreducible curve then either it is special or it contains only finitely
many special points.
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Manin-Mumford conjecture

Let V C(C*)" be an algebraic variety. Then V contains only finitely many
maximal special subvarieties.

o If V is an irreducible curve then either it is special or it contains only finitely
many special points.

o If V is irreducible and contains a “Zariski dense” set of special points (too
many special points) then V is special.
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Dimension of intersection

@ Given two varieties V and W in C", one expects
dim(V N W) =dimV +dim W — n.
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@ Given two varieties V and W in C", one expects
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@ Suppose V is defined by t equations and W is defined by s equations. Then
V N W is defined by t 4+ s equations, so we expect

dimV = n—t, dim W = n—s, dim(VNW) = n—(s+t) = (n—t)+(n—s)—n.
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@ Given two varieties V and W in C", one expects
dim(VN W) =dimV +dimW — n.
@ Suppose V is defined by t equations and W is defined by s equations. Then
V N W is defined by t + s equations, so we expect

dimV = n—t, dim W = n—s, dim(VNW) = n—(s+t) = (n—t)+(n—s)—n.

@ Two curves in a two-dimensional space are likely to intersect, while two
curves in a three-dimensional space are not. If they do intersect, then we

have an unlikely intersection.
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curves in a three-dimensional space are not. If they do intersect, then we
have an unlikely intersection.

Let V,W C C" be irreducible algebraic varieties and X C V N W be an
irreducible component of the intersection. Then

dim X >dim V +dim W — n.
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Dimension of intersection

@ Given two varieties V and W in C", one expects
dim(VN W) =dimV +dimW — n.
@ Suppose V is defined by t equations and W is defined by s equations. Then
V N W is defined by t + s equations, so we expect

dimV = n—t, dim W = n—s, dim(VNW) = n—(s+t) = (n—t)+(n—s)—n.

@ Two curves in a two-dimensional space are likely to intersect, while two
curves in a three-dimensional space are not. If they do intersect, then we

have an unlikely intersection.

Let V,W C C" be irreducible algebraic varieties and X C V N W be an
irreducible component of the intersection. Then

dim X >dim V +dim W — n.

Definition
X is an atypical component of V N W if dim X > dim V + dim W — n.
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Special and atypical subvarieties

Definition

Torsion cosets of tori are special varieties. These are defined by equations of the
form x?ybz¢ = ¢ where ( is a root of unity.
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Special and atypical subvarieties

Definition

Torsion cosets of tori are special varieties. These are defined by equations of the
form x?ybz¢ = ¢ where ( is a root of unity.

Definition

| A

For a variety V C (C*)" and a special variety S C (C*)", a component X of the
intersection V' N S is an atypical subvariety of V if

dimX >dimV +dimS — n.
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Special and atypical subvarieties

Definition
Torsion cosets of tori are special varieties. These are defined by equations of the
form x?ybz¢ = ¢ where ( is a root of unity.

Definition

| A

For a variety V C (C*)" and a special variety S C (C*)", a component X of the
intersection V' N S is an atypical subvariety of V if

dimX >dimV +dimS — n.

If T CV C(C*)" and T is special then it is an atypical subvariety of V, for

dmT7T >dimV +dm T — n.
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Special and atypical subvarieties

Definition

Torsion cosets of tori are special varieties. These are defined by equations of the
form x?ybz¢ = ¢ where ( is a root of unity.

Definition

| A

For a variety V C (C*)" and a special variety S C (C*)", a component X of the
intersection V' N S is an atypical subvariety of V if

dimX >dimV +dimS — n.

If T CV C(C*)"and T is special then it is an atypical subvariety of V, for

dmT7T >dimV +dm T — n.

For example, if V C(C*)? is defined by the equation xy + x2y3 = i + 1 then it
contains the special variety defined by the equations xy = i, x?y3 = 1.
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Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in (C*)" contains only finitely many maximal atypical
subvarieties.
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Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in (C*)" contains only finitely many maximal atypical
subvarieties.

Conjecture (CIT)

Let V C (C*)" be an algebraic variety. Then there is a finite collection ¥ of
proper special subvarieties of (C*)" such that every atypical subvariety X of V is
contained in some T € ¥.
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Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in (C*)" contains only finitely many maximal atypical
subvarieties.

Conjecture (CIT)

Let V C (C*)" be an algebraic variety. Then there is a finite collection ¥ of
proper special subvarieties of (C*)" such that every atypical subvariety X of V is
contained in some T € ¥.

Let V be an algebraic subvariety of (C*)". Then there is a finite collection ¥ of
proper algebraic subtori of (C*)" such that every atypical subvariety of V is
contained in a (not necessarily torsion) coset of some T € X.
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A stronger version of weak CIT

Definition

o Arbitrary cosets of algebraic tori are called weakly special varieties.
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A stronger version of weak CIT

Definition

o Arbitrary cosets of algebraic tori are called weakly special varieties.

@ Let X C(C*)". The weakly special closure of X is the smallest weakly special
subvariety containing X.
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A stronger version of weak CIT

o Arbitrary cosets of algebraic tori are called weakly special varieties.

@ Let X C(C*)". The weakly special closure of X is the smallest weakly special
subvariety containing X.

o’

For every variety V C (C*)" there is a finite collection ¥ of proper special
subvarieties of (C*)" such that every atypical subvariety of V, whose weakly
special closures is special, is contained in some T € ¥.
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A stronger version of weak CIT

o Arbitrary cosets of algebraic tori are called weakly special varieties.

@ Let X C(C*)". The weakly special closure of X is the smallest weakly special
subvariety containing X.

o’

For every variety V C (C*)" there is a finite collection ¥ of proper special
subvarieties of (C*)" such that every atypical subvariety of V, whose weakly
special closures is special, is contained in some T € ¥.

Every variety V. C (C*)" contains only finitely many maximal atypical subvarieties
whose weakly special closures are special.

W
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A stronger version of weak CIT

o Arbitrary cosets of algebraic tori are called weakly special varieties.

@ Let X C(C*)". The weakly special closure of X is the smallest weakly special
subvariety containing X.

o’

For every variety V C (C*)" there is a finite collection ¥ of proper special
subvarieties of (C*)" such that every atypical subvariety of V, whose weakly
special closures is special, is contained in some T € ¥.

Every variety V. C (C*)" contains only finitely many maximal atypical subvarieties
whose weakly special closures are special.

W

The proof combines weak CIT with Manin-Mumford.
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Thank you
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[-special and [-atypical sets

Let I C (C*)" be a subgroup of finite rank.

@ A l-special subvariety of (C*)" is a translate of a torus by an element of T,
i.e. a coset v T where T is a torus and v € T.

@ For an algebraic variety V C (C*)", an atypical component X of an
intersection V NS, where S C (C*)" is I-special, is called [-atypical if every
coset of a subtorus of (C*)" containing X is -special, i.e. contains a point
of I'. For example, if X N T # () then X is M-atypical.
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Mordell-Lang

Let T C (C*)" be a subgroup of finite rank. Then an algebraic variety V C (C*)"
contains only finitely many maximal -special subvarieties.

o’

If VO T is Zariski dense in V' then V is a finite union of I -special varieties.

The Mordell-Lang conjecture for abelian varieties, combined with the Mordell-Weil
theorem, implies the Mordell conjecture, namely, a curve of genus > 2 defined
over Q has only finitely many rational points.

The Mordell-Lang conjecture for semi-abelian varieties was proven in a series of
papers by Faltings, Vojta, Hindry, McQuillan, Raynaud, Laurent.
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Weak CIT for I-special varieties

Let T C (C*)" be a subgroup of finite rank. Then every subvariety V C (C*)"
contains only finitely many maximal I -atypical subvarieties.

Let T C (C*)" be a subgroup of finite rank. Then for every subvariety V C (C*)"
there is a finite collection T of proper [-special subvarieties of (C*)" such that

every I-atypical subvariety of V is contained in some T € ¥.
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Sketch of proof

Lemma

Let T C (C*)" be an algebraic torus and V C (C*)" be an irreducible algebraic
subvariety. Then the set

C:=Cr:={ce(C*)":VncT is atypical in (C*)"}

is a proper Zariski closed subset of (C*)".

Proof.

For every ¢ € (C*)" obviously dim cT = dim T. Hence

| \

C={ce(C*):dim(VNcT)>dimV +dmT —n+1}

which is Zariski closed in (C*)".
One can show that a “generic’ coset intersects V typically, hence C C (C*)". [

v
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Sketch of proof (continued)

o We may assume V is irreducible.

@ Let X be the finite collection of algebraic subtori of (C*)" given by Weak
CIT.

@ Pick a I-atypical subvariety X of V. Then X C bT for some b and some
T € ¥o.

@ bTNT # 10, hence bT =T for some vy € T.
@ It can be shown that V N~ T is atypical, hence v € Cr.

o Let At be the finite set of maximal I'-special subvarieties of C. Observe
that A1 consists of [-cosets of T.

@ Then v € A€ At for some A.
@ Therefore X C~T C AT = A
@ Then X = UTeZo AT works.
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Generalisations

@ The same can be done for semi-abelian varieties.

@ More generally, we can work inside a (I'-)special variety S, define atypicality
with respect to S and obtain analogous results in that setting. A component
X of an intersection VN T, where V, T C S, is atypical in S, if

dimX >dimV +dim T —dim S.

@ The modular j-function satisfies some functional equations that can be used
to define special varieties, pose a modular analogue of CIT (which is a special
case of the general Zilber-Pink conjecture), and prove similar weak
statements there. There is a modular Mordell-Lang due to Habegger and Pila
(2012), and an Ax-Schanuel for j due to Pila and Tsimerman (2015).

o All aforementioned results are also true uniformly in parametric families.
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