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Diophantine geometry

Diophantine geometry is a branch of number theory studying integral or
rational solutions of polynomial equations (Diophantine equations) using
geometric tools.

For example, rational solutions to the equation x2 + y2 = 1 can be
interpreted as rational points on the unit circle.
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A famous example is Faltings’s theorem (the Mordell conjecture) stating that
certain Diophantine equations have only finitely many rational solutions. For
instance, the equation x4 + y4 = 1 has only finitely many rational solutions.
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Diophantine geometry (continued)

We are often interested in special solutions of polynomial equations.

Examples of special points are roots of unity, i.e. numbers z ∈ C for which
zn = 1 for some n > 0 (e.g. i4 = 1). These are the images of rational
numbers under the function e2πiz . Indeed,

(
e2πi·mn

)n
= (e2πi )m = 1.

The equation x + y = 2 has only finitely many solutions with x , y roots of
unity. In fact, the only solution is x = y = 1.
But x2y = 1 has infinitely many special solutions. If x = ζ is any root of
unity then so is y = ζ−2.
S. Lang asked the following question in the 1960s. Assume f (x , y) = 0
contains infinitely many points (ξ, η) whose coordinates are roots of unity (f
is an irreducible polynomial). What can be said about f ? It turns out that up
to multiplication by a constant f must be of the form xmyn − ζ where
m, n ∈ Z and ζ is a root of unity.
In other words, if a curve contains infinitely many points with special
coordinates, then it must be of a special form.
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Algebraic varieties

An algebraic variety is a subset of Cn defined by several polynomial
equations.

Throughout the talk we may assume n ≤ 3 and will let x , y , z
denote the coordinates on C3.
For example, the set

{(x , y , z) ∈ C3 : x3z2 + y3 − z3 − 1 = 0, x2 + y2 + xz4 = 0}

is an algebraic variety.
An algebraic variety V is irreducible if it cannot be decomposed into a union
of two proper algebraic subvarieties. For instance, in C2 the variety
x2 + y2 = 1 is irreducible but x2 + y2 = 0 is reducible (it is the union of the
lines x = iy and x = −iy).
If f (X ,Y ,Z ) ∈ C[X ,Y ,Z ] is an irreducible polynomial then f (x , y , z) = 0
defines an irreducible (hyper)surface.
Every algebraic variety can be decomposed into a finite union of irreducible
components.
The set C× := C \ {0} can be identified with the variety

{(x , y) ∈ C2 : xy = 1} ⊆ C2.
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Dimension

dimV is the maximal length d of chains V0 ( V1 ( . . . ( Vd ⊆ V of
irreducible subvarieties.

dimCn = dim(C×)n = n.
dimV = 0 if and only if V is finite.
If V ⊆ Cn is defined by t independent equations, then we expect its
dimension to be n − t. For instance, if V is defined by a single non-constant
polynomial (it is a hypersurface), then it has dimension n − 1. For instance,
the equation x = y defines a 1-dimensional variety in C2 and a 2-dimensional
variety in C3.
The variety defined by three equations
x2 − y2 = 1, x2 − z2 = 1, x(y − z) = 0 has dimension 1 in C3.
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Algebraic tori

Let (C×; ·, 1) be the multiplicative group of non-zero complex numbers. It is
an algebraic group, i.e. an algebraic variety where the group operation is
given by a polynomial map (in this case (x , y) 7→ xy).

For any n ∈ N the
Cartesian power (C×)n is also a group under coordinate-wise multiplication.
A subvariety T ⊆ (C×)n is called an algebraic torus if it is irreducible and is a
subgroup of (C×)n.
For example, the variety x5yz2 = 1 is an algebraic torus, for if x5

1 y1z
2
1 = 1

and x5
2 y2z
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Manin-Mumford conjecture

Theorem (Manin-Mumford for tori; Raynaud, Hindry)

Let V ⊆(C×)n be an algebraic variety. Then V contains only finitely many
maximal special subvarieties.

If V is an irreducible curve then either it is special or it contains only finitely
many special points.
If V is irreducible and contains a “Zariski dense” set of special points (too
many special points) then V is special.
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Dimension of intersection

Given two varieties V and W in Cn, one expects

dim(V ∩W ) = dimV + dimW − n.

Suppose V is defined by t equations and W is defined by s equations. Then
V ∩W is defined by t + s equations, so we expect

dimV = n−t, dimW = n−s, dim(V∩W ) = n−(s+t) = (n−t)+(n−s)−n.

Two curves in a two-dimensional space are likely to intersect, while two
curves in a three-dimensional space are not. If they do intersect, then we
have an unlikely intersection.

Theorem
Let V ,W ⊆ Cn be irreducible algebraic varieties and X ⊆ V ∩W be an
irreducible component of the intersection. Then

dimX ≥ dimV + dimW − n.

Definition
X is an atypical component of V ∩W if dimX > dimV + dimW − n.
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Special and atypical subvarieties

Definition
Torsion cosets of tori are special varieties. These are defined by equations of the
form xaybzc = ζ where ζ is a root of unity.

Definition
For a variety V ⊆ (C×)n and a special variety S ⊆ (C×)n, a component X of the
intersection V ∩ S is an atypical subvariety of V if

dimX > dimV + dim S − n.

Remark
If T ⊆ V ( (C×)n and T is special then it is an atypical subvariety of V , for

dimT > dimV + dimT − n.

For example, if V ⊆(C×)2 is defined by the equation xy + x2y3 = i + 1 then it
contains the special variety defined by the equations xy = i , x2y3 = 1.
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Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in (C×)n contains only finitely many maximal atypical
subvarieties.

Conjecture (CIT)

Let V ⊆ (C×)n be an algebraic variety. Then there is a finite collection Σ of
proper special subvarieties of (C×)n such that every atypical subvariety X of V is
contained in some T ∈ Σ.

Theorem (Weak CIT; Zilber, Bombieri-Masser-Zannier, Kirby)

Let V be an algebraic subvariety of (C×)n. Then there is a finite collection Σ of
proper algebraic subtori of (C×)n such that every atypical subvariety of V is
contained in a (not necessarily torsion) coset of some T ∈ Σ.
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A stronger version of weak CIT

Definition
Arbitrary cosets of algebraic tori are called weakly special varieties.

Let X ⊆(C×)n. The weakly special closure of X is the smallest weakly special
subvariety containing X .

Theorem (A., 2019)

For every variety V ⊆ (C×)n there is a finite collection Σ of proper special
subvarieties of (C×)n such that every atypical subvariety of V , whose weakly
special closures is special, is contained in some T ∈ Σ.

Theorem (A., 2019)

Every variety V ⊆ (C×)n contains only finitely many maximal atypical subvarieties
whose weakly special closures are special.

The proof combines weak CIT with Manin-Mumford.
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Thank you
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Γ-special and Γ-atypical sets

Definition
Let Γ ⊆ (C×)n be a subgroup of finite rank.

A Γ-special subvariety of (C×)n is a translate of a torus by an element of Γ,
i.e. a coset γT where T is a torus and γ ∈ Γ.
For an algebraic variety V ⊆ (C×)n, an atypical component X of an
intersection V ∩ S , where S ⊆ (C×)n is Γ-special, is called Γ-atypical if every
coset of a subtorus of (C×)n containing X is Γ-special, i.e. contains a point
of Γ. For example, if X ∩ Γ 6= ∅ then X is Γ-atypical.
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Mordell-Lang

Theorem (Mordell-Lang for (C×)n; Laurent)

Let Γ ⊆ (C×)n be a subgroup of finite rank. Then an algebraic variety V ⊆ (C×)n

contains only finitely many maximal Γ-special subvarieties.

Theorem
If V ∩ Γ is Zariski dense in V then V is a finite union of Γ-special varieties.

Remark
The Mordell-Lang conjecture for abelian varieties, combined with the Mordell-Weil
theorem, implies the Mordell conjecture, namely, a curve of genus ≥ 2 defined
over Q has only finitely many rational points.

The Mordell-Lang conjecture for semi-abelian varieties was proven in a series of
papers by Faltings, Vojta, Hindry, McQuillan, Raynaud, Laurent.
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Weak CIT for Γ-special varieties

Theorem (A., 2019)

Let Γ ⊆ (C×)n be a subgroup of finite rank. Then every subvariety V ⊆ (C×)n

contains only finitely many maximal Γ-atypical subvarieties.

Theorem (A., 2019)

Let Γ ⊆ (C×)n be a subgroup of finite rank. Then for every subvariety V ⊆ (C×)n

there is a finite collection Σ of proper Γ-special subvarieties of (C×)n such that
every Γ-atypical subvariety of V is contained in some T ∈ Σ.
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Sketch of proof

Lemma
Let T ⊆ (C×)n be an algebraic torus and V ⊆ (C×)n be an irreducible algebraic
subvariety. Then the set

C := CT := {c ∈ (C×)n : V ∩ cT is atypical in (C×)n}

is a proper Zariski closed subset of (C×)n.

Proof.
For every c ∈ (C×)n obviously dim cT = dimT . Hence

C = {c ∈ (C×)n : dim(V ∩ cT ) ≥ dimV + dimT − n + 1}

which is Zariski closed in (C×)n.
One can show that a “generic” coset intersects V typically, hence C ( (C×)n.
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Sketch of proof (continued)

We may assume V is irreducible.
Let Σ0 be the finite collection of algebraic subtori of (C×)n given by Weak
CIT.
Pick a Γ-atypical subvariety X of V . Then X ⊆ bT for some b and some
T ∈ Σ0.
bT ∩ Γ 6= ∅, hence bT = γT for some γ ∈ Γ.
It can be shown that V ∩ γT is atypical, hence γ ∈ CT .
Let ∆T be the finite set of maximal Γ-special subvarieties of CT . Observe
that ∆T consists of Γ-cosets of T .
Then γ ∈ A ∈ ∆T for some A.
Therefore X ⊆ γT ⊆ AT = A.
Then Σ =

⋃
T∈Σ0

∆T works.
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Generalisations

The same can be done for semi-abelian varieties.
More generally, we can work inside a (Γ-)special variety S , define atypicality
with respect to S and obtain analogous results in that setting. A component
X of an intersection V ∩ T , where V ,T ⊆ S , is atypical in S , if

dimX > dimV + dimT − dimS .

The modular j-function satisfies some functional equations that can be used
to define special varieties, pose a modular analogue of CIT (which is a special
case of the general Zilber-Pink conjecture), and prove similar weak
statements there. There is a modular Mordell-Lang due to Habegger and Pila
(2012), and an Ax-Schanuel for j due to Pila and Tsimerman (2015).
All aforementioned results are also true uniformly in parametric families.
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