Strongly minimal sets in *j*-reducts of differentially closed fields

Vahagn Aslanyan

University of East Anglia

London 11 December 2019

Vahagn Aslanyan (UEA) Strongly minimal sets in *j*-reducts of diffe London 11 December 2019 1/19

• Let $\mathbb{H} := \{z \in \mathbb{C} : Im(z) > 0\}$ be the complex upper half-plane.

3

-

- Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz=rac{az+b}{cz+d}.$$

- Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = rac{az+b}{cz+d}.$$

 The function j : ℍ → ℂ is a modular function of weight 0 for the modular group SL₂(ℤ) defined and analytic on ℍ.

- Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = rac{\mathsf{a}z+\mathsf{b}}{\mathsf{c}z+\mathsf{d}}.$$

• The function $j : \mathbb{H} \to \mathbb{C}$ is a modular function of weight 0 for the modular group $SL_2(\mathbb{Z})$ defined and analytic on \mathbb{H} .

•
$$j(gz) = j(z)$$
 for all $g \in SL_2(\mathbb{Z})$.

- Let $\mathbb{H} := \{z \in \mathbb{C} : \mathsf{Im}(z) > 0\}$ be the complex upper half-plane.
- $\operatorname{GL}_2^+(\mathbb{R})$ is the group of 2×2 matrices with real entries and positive determinant. It acts on \mathbb{H} via linear fractional transformations. That is, for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2^+(\mathbb{R})$ we define

$$gz = rac{\mathsf{a}z+\mathsf{b}}{\mathsf{c}z+\mathsf{d}}.$$

• The function $j : \mathbb{H} \to \mathbb{C}$ is a modular function of weight 0 for the modular group $SL_2(\mathbb{Z})$ defined and analytic on \mathbb{H} .

•
$$j(gz) = j(z)$$
 for all $g \in SL_2(\mathbb{Z})$.

By means of j the quotient SL₂(Z) \ Ⅲ is identified with C (thus, j is a bijection from the fundamental domain of SL₂(Z) to C).

 For g ∈ GL₂⁺(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.

- For g ∈ GL₂⁺(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_N(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in GL_2^+(\mathbb{Q})$ with N = N(g), the function $\Phi_N(j(z), j(gz))$ is identically zero.

- For g ∈ GL₂⁺(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_N(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in GL_2^+(\mathbb{Q})$ with N = N(g), the function $\Phi_N(j(z), j(gz))$ is identically zero.
- Conversely, if $\Phi_N(j(z_1), j(z_2)) = 0$ for some $z_1, z_2 \in \mathbb{H}$ then $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$ with N = N(g).

- For g ∈ GL₂⁺(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_N(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in GL_2^+(\mathbb{Q})$ with N = N(g), the function $\Phi_N(j(z), j(gz))$ is identically zero.
- Conversely, if $\Phi_N(j(z_1), j(z_2)) = 0$ for some $z_1, z_2 \in \mathbb{H}$ then $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$ with N = N(g).
- Thus, given $z_1, z_2 \in \mathbb{H}$, we have $\Phi_N(j(z_1), j(z_2)) = 0$ if and only if $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$.

- For g ∈ GL₂⁺(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_N(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in GL_2^+(\mathbb{Q})$ with N = N(g), the function $\Phi_N(j(z), j(gz))$ is identically zero.
- Conversely, if $\Phi_N(j(z_1), j(z_2)) = 0$ for some $z_1, z_2 \in \mathbb{H}$ then $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$ with N = N(g).
- Thus, given $z_1, z_2 \in \mathbb{H}$, we have $\Phi_N(j(z_1), j(z_2)) = 0$ if and only if $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$.
- The polynomials Φ_N are called *modular polynomials*.

• • = • • = •

- For g ∈ GL₂⁺(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_N(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in GL_2^+(\mathbb{Q})$ with N = N(g), the function $\Phi_N(j(z), j(gz))$ is identically zero.
- Conversely, if $\Phi_N(j(z_1), j(z_2)) = 0$ for some $z_1, z_2 \in \mathbb{H}$ then $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$ with N = N(g).
- Thus, given $z_1, z_2 \in \mathbb{H}$, we have $\Phi_N(j(z_1), j(z_2)) = 0$ if and only if $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$.
- The polynomials Φ_N are called *modular polynomials*.
- $\Phi_1(X, Y) = X Y$ and all the other modular polynomials are symmetric.

< 回 > < 回 > < 回 >

- For g ∈ GL₂⁺(ℚ) we let N(g) be the determinant of g scaled so that it has relatively prime integral entries.
- For each positive integer N there is an irreducible polynomial $\Phi_N(X, Y) \in \mathbb{Z}[X, Y]$ such that whenever $g \in GL_2^+(\mathbb{Q})$ with N = N(g), the function $\Phi_N(j(z), j(gz))$ is identically zero.
- Conversely, if $\Phi_N(j(z_1), j(z_2)) = 0$ for some $z_1, z_2 \in \mathbb{H}$ then $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$ with N = N(g).
- Thus, given $z_1, z_2 \in \mathbb{H}$, we have $\Phi_N(j(z_1), j(z_2)) = 0$ if and only if $z_2 = gz_1$ for some $g \in GL_2^+(\mathbb{Q})$.
- The polynomials Φ_N are called *modular polynomials*.
- $\Phi_1(X, Y) = X Y$ and all the other modular polynomials are symmetric.
- Two elements w₁, w₂ ∈ C are called *modularly independent* if they do not satisfy any modular relation Φ_N(w₁, w₂) = 0.

・ 何 ト ・ ヨ ト ・ ヨ ト

Differential equation

• The *j*-function satisfies an order 3 algebraic differential equation over \mathbb{Q} . Namely, $\Psi(j, j', j'', j''') = 0$ where

$$\Psi(y_0, y_1, y_2, y_3) = \frac{y_3}{y_1} - \frac{3}{2} \left(\frac{y_2}{y_1}\right)^2 + \frac{y_0^2 - 1968y_0 + 2654208}{2y_0^2(y_0 - 1728)^2} \cdot y_1^2.$$

Differential equation

• The *j*-function satisfies an order 3 algebraic differential equation over \mathbb{Q} . Namely, $\Psi(j, j', j'', j''') = 0$ where

$$\Psi(y_0, y_1, y_2, y_3) = \frac{y_3}{y_1} - \frac{3}{2} \left(\frac{y_2}{y_1}\right)^2 + \frac{y_0^2 - 1968y_0 + 2654208}{2y_0^2(y_0 - 1728)^2} \cdot y_1^2.$$

Thus

$$\Psi(y, y', y'', y''') = Sy + R(y)(y')^2,$$

where S denotes the Schwarzian derivative defined by $Sy = \frac{y'''}{y'} - \frac{3}{2} \left(\frac{y''}{y'}\right)^2 \text{ and } R(y) = \frac{y^2 - 1968y + 2654208}{2y^2(y - 1728)^2}.$

Differential equation

• The *j*-function satisfies an order 3 algebraic differential equation over \mathbb{Q} . Namely, $\Psi(j, j', j'', j''') = 0$ where

$$\Psi(y_0, y_1, y_2, y_3) = \frac{y_3}{y_1} - \frac{3}{2} \left(\frac{y_2}{y_1}\right)^2 + \frac{y_0^2 - 1968y_0 + 2654208}{2y_0^2(y_0 - 1728)^2} \cdot y_1^2.$$

Thus

$$\Psi(y, y', y'', y''') = Sy + R(y)(y')^2,$$

where S denotes the Schwarzian derivative defined by $Sy = \frac{y'''}{y'} - \frac{3}{2} \left(\frac{y''}{y'}\right)^2 \text{ and } R(y) = \frac{y^2 - 1968y + 2654208}{2y^2(y - 1728)^2}.$

• All functions j(gz) with $g \in SL_2(\mathbb{C})$ satisfy the differential equation $\Psi(y, y', y'', y''') = 0$ and in fact all solutions are of that form.

In a differential field (K; +, ·, ') for a non-constant x ∈ K define a derivation ∂_x : K → K by ∂_x : y ↦ ^{y'}/_{x'}.

Two-variable equation

- In a differential field (K; +, ·, ') for a non-constant x ∈ K define a derivation ∂_x : K → K by ∂_x : y ↦ ^{y'}/_{x'}.
- Let Ψ(y, y', y'', y''') = 0 be the differential equation of j. Consider its two-variable version

$$\chi(x,y) := \Psi(y, \partial_x y, \partial_x^2 y, \partial_x^3 y) = 0.$$

Two-variable equation

- In a differential field (K; +, ·, ') for a non-constant x ∈ K define a derivation ∂_x : K → K by ∂_x : y ↦ ^{y'}/_{x'}.
- Let Ψ(y, y', y'', y''') = 0 be the differential equation of j. Consider its two-variable version

$$\chi(x,y) := \Psi(y, \partial_x y, \partial_x^2 y, \partial_x^3 y) = 0.$$

• If we think of x = x(t) as a complex function of t, then y = j(gx(t)) for some $g \in SL_2(\mathbb{C})$.

Ax-Schanuel for j

Theorem (Ax-Schanuel for *j*; Pila-Tsimerman, 2015)

Let $(z_i, j_i) \in K^2$, i = 1, ..., n, be non-constant elements with with $\chi(z_i, j_i) = 0$. If j_i 's are pairwise modularly independent then

 $td_{C}C(z_{1},j_{1},\partial_{z_{1}}j_{1},\partial_{z_{1}}^{2}j_{1},\ldots,z_{n},j_{n},\partial_{z_{n}}j_{n},\partial_{z_{n}}^{2}j_{n})\geq 3n+1.$

Ax-Schanuel for j

Theorem (Ax-Schanuel for *j*; Pila-Tsimerman, 2015)

Let $(z_i, j_i) \in K^2$, i = 1, ..., n, be non-constant elements with with $\chi(z_i, j_i) = 0$. If j_i 's are pairwise modularly independent then

 $td_{C}C(z_{1},j_{1},\partial_{z_{1}}j_{1},\partial_{z_{1}}^{2}j_{1},\ldots,z_{n},j_{n},\partial_{z_{n}}j_{n},\partial_{z_{n}}^{2}j_{n})\geq 3n+1.$

Corollary (Ax-Schanuel without derivatives)

Let $(z_i, j_i) \in K^2$, i = 1, ..., n, be non-constant with $\chi(z_i, j_i) = 0$. If j_i 's are pairwise modularly independent then $td_C C(\bar{z}, \bar{j}) \ge n + 1$.

Ax-Schanuel for j

Theorem (Ax-Schanuel for *j*; Pila-Tsimerman, 2015)

Let $(z_i, j_i) \in K^2$, i = 1, ..., n, be non-constant elements with with $\chi(z_i, j_i) = 0$. If j_i 's are pairwise modularly independent then

 $td_{C}C(z_{1},j_{1},\partial_{z_{1}}j_{1},\partial_{z_{1}}^{2}j_{1},\ldots,z_{n},j_{n},\partial_{z_{n}}j_{n},\partial_{z_{n}}^{2}j_{n})\geq 3n+1.$

Corollary (Ax-Schanuel without derivatives)

Let $(z_i, j_i) \in K^2$, i = 1, ..., n, be non-constant with $\chi(z_i, j_i) = 0$. If j_i 's are pairwise modularly independent then $td_C C(\bar{z}, \bar{j}) \ge n + 1$.

Corollary (Ax-Lindemann-Weierstrass)

Let $z, j_i \in K$, i = 1, ..., n, be non-constant elements with $\chi(z, j_i) = 0$. If j_i 's are pairwise modularly independent then $j_1, \partial_z j_1, \partial_z^2 j_1, ..., j_n, \partial_z j_n, \partial_z^2 j_n$ are algebraically independent over C(z).

Strong minimality of $\Psi(y, y', y'', y''') = 0$

Theorem (Freitag-Scanlon, 2015)

Let $(K; +, \cdot, ')$ be a differentially closed field. Then the set $U \subseteq K$ defined by $\Psi(y, y', y'', y''') = 0$ is strongly minimal and geometrically trivial.

Theorem (Freitag-Scanlon, 2015)

Let $(K; +, \cdot, ')$ be a differentially closed field. Then the set $U \subseteq K$ defined by $\Psi(y, y', y'', y''') = 0$ is strongly minimal and geometrically trivial.

Strongly minimal sets in differentially closed fields satisfy Zilber's trichotomy.

Theorem (Hrushovski-Sokolović, 1993)

A strongly minimal set in a differentially closed field must be either geometrically trivial (that is, the closure of a set is equal to the union of closures of singletons) or non-orthogonal to a Manin kernel (this is the locally modular non-trivial case) or non-orthogonal to the field of constants (this is the non-locally modular case).

- We need to show that every definable (possibly with parameters) subset V of U is either finite or co-finite.
- By stable embedding there is a finite subset A = {a₁,..., a_n} ⊆ U such that V is defined over A.
- It suffices to show that U realises a unique non-algebraic type over A.
- We know that $\operatorname{acl}(A) = (\mathbb{Q}\langle A \rangle)^{\operatorname{alg}} = (\mathbb{Q}(\bar{a}, \bar{a}', \bar{a}'')^{\operatorname{alg}}.$
- Let $u \in U \setminus \operatorname{acl}(A)$. Then u is modularly independent from each a_i .
- Assume WLOG that a_i's are pairwise modularly independent.

- By Ax-Lindemann-Weierstrass u, u', u'' are algebraically independent over $\mathbb{Q}\langle A \rangle$.
- Hence tp(u/A) is determined uniquely (axiomatised) by the set of formulae $\Psi(y, y', y'', y''') = 0$ and

 $\{P(y, y', y'') \neq 0 : P(Y_0, Y_1, Y_2) \in \mathbb{Q}\langle A \rangle [Y_0, Y_1, Y_2]\}.$

- Similarly, if A ⊆ U is a (finite) subset and u ∈ U ∩ acl(A) then there is a ∈ A such that u ∈ acl(a). This proves that U is geometrically trivial.
- Note that here we did not use full Ax-Schanuel, just the Ax-Lindemann-Weierstrass theorem.

Definition

A strongly minimal set is $\omega\text{-categorical}$ if the closure of any finite subset is finite.

Definition

A strongly minimal set is $\omega\text{-categorical}$ if the closure of any finite subset is finite.

Theorem (Hrushovski, 1995)

Order 1 strongly minimal sets in DCF_0 are either non-orthogonal to C or are geometrically trivial and ω -categorical.

Definition

A strongly minimal set is $\omega\text{-categorical}$ if the closure of any finite subset is finite.

Theorem (Hrushovski, 1995)

Order 1 strongly minimal sets in DCF_0 are either non-orthogonal to C or are geometrically trivial and ω -categorical.

The set U is not ω -categorical, since $j(gz) \in U$ and for $g \in GL_2^+(\mathbb{Q})$ j(gz) is algebraic over j(z).

If K is a differential field, consider its reduct $K_{E_j} := (K; +, \cdot, E_j)$ where $E_j(x, y)$ is a binary relation interpreted as the set of solutions of the equation $\chi(x, y) = 0$.

Basic axioms

The theory T_j^0 consists of the following first-order statements about a structure K in the language $\mathfrak{L}_j := \{+, \cdot, E_j, 0, 1\}$.

- A1 *K* is an algebraically closed field with an algebraically closed subfield $C := C_K$, which is defined by $E_j(1, y)$. Further, $C^2 \subseteq E_j$.
- A2 If $(z,j) \in E_j$ then for any $g \in SL_2(C)$ we have $(gz,j) \in E_j$. Conversely, if for some j we have $(z_1,j), (z_2,j) \in E_j$ then $z_2 = gz_1$ for some $g \in SL_2(C)$.
- A3 If $(z, j_1) \in E_j$ and $\Phi(j_1, j_2) = 0$ for some modular polynomial $\Phi(X, Y)$ then $(z, j_2) \in E_j$.
- AS Given a parametric family of varieties $(W_{\bar{c}})_{\bar{c}\in C} \subseteq K^{2n}$, there is a natural number N(W) such that if $\bar{c} \in C$ satisfies dim $W_{\bar{c}} \leq n$, and if $(\bar{z}, \bar{j}) \in E_j(K) \cap W_{\bar{c}}(K)$ and $j_i \notin C$ for all i, then $\Phi_N(j_i, j_k) = 0$ for some $N \leq N(W)$ and some $1 \leq i < k \leq n$.

Basic axioms

The theory T_j^0 consists of the following first-order statements about a structure K in the language $\mathfrak{L}_j := \{+, \cdot, E_j, 0, 1\}$.

- A1 *K* is an algebraically closed field with an algebraically closed subfield $C := C_K$, which is defined by $E_j(1, y)$. Further, $C^2 \subseteq E_j$.
- A2 If $(z,j) \in E_j$ then for any $g \in SL_2(C)$ we have $(gz,j) \in E_j$. Conversely, if for some j we have $(z_1,j), (z_2,j) \in E_j$ then $z_2 = gz_1$ for some $g \in SL_2(C)$.
- A3 If $(z, j_1) \in E_j$ and $\Phi(j_1, j_2) = 0$ for some modular polynomial $\Phi(X, Y)$ then $(z, j_2) \in E_j$.
- AS Given a parametric family of varieties $(W_{\bar{c}})_{\bar{c}\in C} \subseteq K^{2n}$, there is a natural number N(W) such that if $\bar{c} \in C$ satisfies dim $W_{\bar{c}} \leq n$, and if $(\bar{z}, \bar{j}) \in E_j(K) \cap W_{\bar{c}}(K)$ and $j_i \notin C$ for all i, then $\Phi_N(j_i, j_k) = 0$ for some $N \leq N(W)$ and some $1 \leq i < k \leq n$.

AS is an analogue of a uniform version of Ax-Schanuel. It holds in all differential fields (by the compactness theorem) and can be written as a first-order axiom scheme.

Vahagn Aslanyan (UEA) Strongly minimal sets in *j*-reducts of diffeLondon 11 December 2019 12/19

Predimension

- An E_j -field is a model K of T_j^0 . By abuse of notation, for any n we let $E_j(K)$ denote the set of all tuples $(\bar{z}, \bar{j}) \in K^{2n}$ with $(z_i, j_i) \in E_j$ for all i.
- In an E_j -field one can define *predimension*. The predimension of a tuple (\bar{z}, \bar{j}) , denoted $\delta(\bar{z}, \bar{j})$, is equal to $td_C C(\bar{z}, \bar{j})$ minus the number of pairwise modularly independent j's. The latter is a dimension of trivial type.
- The AS axiom scheme states that the predimension is non-negative.
- An extension A ⊆ B of E_j-fields is strong if for any tuple
 (z̄, j̄) ∈ E_j(A) if we extend it to a tuple from B then the predimension
 does not go down.
- The class of E_j -fields has the strong amalgamation property, which allows one to carry out a Hrushovski style amalgamation-with-predimension construction and get a countable E_j -field U which is universal, saturated and homogeneous with respect to strong extensions.

Let *n* be a positive integer, $k \leq n$ and $1 \leq i_1 < \ldots < i_k \leq n$. Denote $\overline{i} := (i_1, \ldots, i_k)$ and define the projection map $pr_{\overline{i}} : K^{2n} \to K^{2k}$ by

$$\operatorname{pr}_{\overline{i}}:(x_1,\ldots,x_n,y_1,\ldots,y_n)\mapsto (x_{i_1},\ldots,x_{i_k},y_{i_1},\ldots,y_{i_k}).$$

Definition

Let K be an algebraically closed field. An irreducible algebraic variety $V \subseteq K^{2n}$ is normal if for any $1 \leq i_1 < \ldots < i_k \leq n$ we have dim $\operatorname{pr}_{\overline{i}} V \geq k$. We say V is strongly normal if the strict inequality dim $\operatorname{pr}_{\overline{i}} V > k$ holds.

Consider the following statements for an E_j -field K.

- EC For each normal variety $V \subseteq K^{2n}$ the intersection $E_j(K) \cap V(K)$ is non-empty.
- NT There is a non-constant element in K.

Consider the following statements for an E_j -field K.

- EC For each normal variety $V \subseteq K^{2n}$ the intersection $E_j(K) \cap V(K)$ is non-empty.
- NT There is a non-constant element in K.
- Let T_j be the theory A1-A3,AS,EC,NT.

Theorem (A., 2017)

 T_j is the first-order theory of U. It is consistent and complete, ω -stable of Morley rank ω .

Let $(K; +, \cdot, ')$ be a countable saturated differentially closed field and $K_{E_j} = (K; +, \cdot, E_j)$ be its *j*-reduct.

Theorem (A., 2017) The following are equivalent. $U \cong K_{F_{i}}$.

$$O U \equiv K_{E_i}$$

Conjecture (EC conjecture)

j-reducts of differentially closed fields satisfy EC. Hence, T_j is a complete axiomatisation of their first-order theory.

Theorem (A., 2018)

All strongly minimal sets in U are either geometrically trivial or non-orthogonal to the field of constants.

Vahagn Aslanyan (UEA) Strongly minimal sets in *j*-reducts of diffeLondon 11 December 2019 17 / 19

Theorem (A., 2018)

All strongly minimal sets in U are either geometrically trivial or non-orthogonal to the field of constants.

Corollary

Assume the EC conjecture. Then all strongly minimal sets in K_{E_j} are either geometrically trivial or non-orthogonal to the field of constants.

• The predimension governs the geometry of *U*. There is a dimension function (hence a pregeometry) on *U* associated with the predimension.

- The predimension governs the geometry of *U*. There is a dimension function (hence a pregeometry) on *U* associated with the predimension.
- We get a quantifier elimination result: every formula is equivalent to a Boolean combination of existential formulas (near model completeness).

- The predimension governs the geometry of *U*. There is a dimension function (hence a pregeometry) on *U* associated with the predimension.
- We get a quantifier elimination result: every formula is equivalent to a Boolean combination of existential formulas (near model completeness).
- *U* has Morley rank ω. Small sets, i.e. of finite Morley rank, are essentially existentially definable, while large sets are universally definable.

- The predimension governs the geometry of *U*. There is a dimension function (hence a pregeometry) on *U* associated with the predimension.
- We get a quantifier elimination result: every formula is equivalent to a Boolean combination of existential formulas (near model completeness).
- *U* has Morley rank ω. Small sets, i.e. of finite Morley rank, are essentially existentially definable, while large sets are universally definable.
- Apply Ax-Schanuel as above.

Thank you

2

▲ 冊 ▶ → ● 三