A remark on atypical intersections

Vahagn Aslanyan
University of East Anglia

Norwich
11 November 2019

Algebraic varieties

- An (affine) algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations.

Algebraic varieties

- An (affine) algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations.
- For example, the set
$\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}$ is an algebraic variety.

Algebraic varieties

- An (affine) algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations.
- For example, the set $\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}$ is an algebraic variety.
- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties.

Algebraic varieties

- An (affine) algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations.
- For example, the set $\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}$ is an algebraic variety.
- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties.
- If $f(\bar{X}) \in \mathbb{C}[\bar{X}]$ is an irreducible polynomial then $f(\bar{x})=0$ defines an irreducible hypersurface.

Algebraic varieties

- An (affine) algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations.
- For example, the set $\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}$ is an algebraic variety.
- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties.
- If $f(\bar{X}) \in \mathbb{C}[\bar{X}]$ is an irreducible polynomial then $f(\bar{x})=0$ defines an irreducible hypersurface.
- Every algebraic variety can be decomposed into a finite union of irreducible components. E.g. $x^{2}+y^{2}=0$ is a union of two lines.

Algebraic varieties

- An (affine) algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations.
- For example, the set $\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}$ is an algebraic variety.
- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties.
- If $f(\bar{X}) \in \mathbb{C}[\bar{X}]$ is an irreducible polynomial then $f(\bar{x})=0$ defines an irreducible hypersurface.
- Every algebraic variety can be decomposed into a finite union of irreducible components. E.g. $x^{2}+y^{2}=0$ is a union of two lines.
- The set $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$ can be identified with the variety $\left\{(x, y) \in \mathbb{C}^{2}: x y=1\right\} \subseteq \mathbb{C}^{2}$.

Algebraic varieties

- An (affine) algebraic variety is a subset of \mathbb{C}^{n} defined by several polynomial equations.
- For example, the set $\left\{(x, y, z) \in \mathbb{C}^{3}: x^{3} z^{2}+y^{3}-z^{3}-1=0, x^{2}+y^{2}+x z^{4}=0\right\}$ is an algebraic variety.
- An algebraic variety V is irreducible if it cannot be decomposed into a union of two proper algebraic subvarieties.
- If $f(\bar{X}) \in \mathbb{C}[\bar{X}]$ is an irreducible polynomial then $f(\bar{x})=0$ defines an irreducible hypersurface.
- Every algebraic variety can be decomposed into a finite union of irreducible components. E.g. $x^{2}+y^{2}=0$ is a union of two lines.
- The set $\mathbb{C}^{\times}:=\mathbb{C} \backslash\{0\}$ can be identified with the variety $\left\{(x, y) \in \mathbb{C}^{2}: x y=1\right\} \subseteq \mathbb{C}^{2}$.
- One can define the Zariski topology on \mathbb{C}^{n} by declaring algebraic varieties to be the closed sets.

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.
- Equivalently, $\operatorname{dim} V=\max \{\operatorname{td}(K(\bar{v}) / K): \bar{v} \in V(\mathbb{C})\}$ where td stands for transcendence degree and $K \subseteq \mathbb{C}$ is a finitely generated subfield over which V is defined, that is, the defining polynomials can be chosen to be over K.

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.
- Equivalently, $\operatorname{dim} V=\max \{\operatorname{td}(K(\bar{v}) / K): \bar{v} \in V(\mathbb{C})\}$ where td stands for transcendence degree and $K \subseteq \mathbb{C}$ is a finitely generated subfield over which V is defined, that is, the defining polynomials can be chosen to be over K.
- $\operatorname{dim} \mathbb{C}^{n}=\operatorname{dim}\left(\mathbb{C}^{\times}\right)^{n}=n$.

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.
- Equivalently, $\operatorname{dim} V=\max \{\operatorname{td}(K(\bar{v}) / K): \bar{v} \in V(\mathbb{C})\}$ where td stands for transcendence degree and $K \subseteq \mathbb{C}$ is a finitely generated subfield over which V is defined, that is, the defining polynomials can be chosen to be over K.
- $\operatorname{dim} \mathbb{C}^{n}=\operatorname{dim}\left(\mathbb{C}^{\times}\right)^{n}=n$.
- $\operatorname{dim} V=0$ if and only if V is finite.

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.
- Equivalently, $\operatorname{dim} V=\max \{\operatorname{td}(K(\bar{v}) / K): \bar{v} \in V(\mathbb{C})\}$ where td stands for transcendence degree and $K \subseteq \mathbb{C}$ is a finitely generated subfield over which V is defined, that is, the defining polynomials can be chosen to be over K.
- $\operatorname{dim} \mathbb{C}^{n}=\operatorname{dim}\left(\mathbb{C}^{\times}\right)^{n}=n$.
- $\operatorname{dim} V=0$ if and only if V is finite.
- If $V \subseteq \mathbb{C}^{n}$ is defined by d independent equations, then we expect its dimension to be $n-d$. For instance, if V is defined by a single non-constant polynomial (it is a hypersurface), then it has dimension $n-1$.

Dimension

- $\operatorname{dim} V$ is the maximal length d of chains $V_{0} \subsetneq V_{1} \subsetneq \ldots \subsetneq V_{d} \subseteq V$ of irreducible subvarieties.
- Equivalently, $\operatorname{dim} V=\max \{\operatorname{td}(K(\bar{v}) / K): \bar{v} \in V(\mathbb{C})\}$ where $t d$ stands for transcendence degree and $K \subseteq \mathbb{C}$ is a finitely generated subfield over which V is defined, that is, the defining polynomials can be chosen to be over K.
- $\operatorname{dim} \mathbb{C}^{n}=\operatorname{dim}\left(\mathbb{C}^{\times}\right)^{n}=n$.
- $\operatorname{dim} V=0$ if and only if V is finite.
- If $V \subseteq \mathbb{C}^{n}$ is defined by d independent equations, then we expect its dimension to be $n-d$. For instance, if V is defined by a single non-constant polynomial (it is a hypersurface), then it has dimension $n-1$.
- The variety defined by three equations
$x^{2}-y^{2}=1, x^{2}-z^{2}=1, x(y-z)=0$ has dimension 1.

Dimension of intersection

- Given two varieties V and W in \mathbb{C}^{n}, one expects that $\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W-n$.

Dimension of intersection

- Given two varieties V and W in \mathbb{C}^{n}, one expects that $\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W-n$.
- Two curves in a two-dimensional space are likely to intersect, while two curves in a three-dimensional space are not. If they do intersect, then we have an unlikely intersection.

Dimension of intersection

- Given two varieties V and W in \mathbb{C}^{n}, one expects that $\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W-n$.
- Two curves in a two-dimensional space are likely to intersect, while two curves in a three-dimensional space are not. If they do intersect, then we have an unlikely intersection.

Theorem

Let $V, W \subseteq \mathbb{C}^{n}$ be irreducible algebraic varieties and $X \subseteq V \cap W$ be an irreducible component of the intersection. Then

$$
\operatorname{dim} X \geq \operatorname{dim} V+\operatorname{dim} W-n
$$

Dimension of intersection

- Given two varieties V and W in \mathbb{C}^{n}, one expects that $\operatorname{dim}(V \cap W)=\operatorname{dim} V+\operatorname{dim} W-n$.
- Two curves in a two-dimensional space are likely to intersect, while two curves in a three-dimensional space are not. If they do intersect, then we have an unlikely intersection.

Theorem

Let $V, W \subseteq \mathbb{C}^{n}$ be irreducible algebraic varieties and $X \subseteq V \cap W$ be an irreducible component of the intersection. Then

$$
\operatorname{dim} X \geq \operatorname{dim} V+\operatorname{dim} W-n
$$

Definition

X is an atypical component of $V \cap W$ if $\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} W-n$.

Algebraic tori

- Let $\mathbb{G}_{\mathrm{m}}(\mathbb{C})$ be the multiplicative group $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map.

Algebraic tori

- Let $\mathbb{G}_{\mathrm{m}}(\mathbb{C})$ be the multiplicative group $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map.
- A subvariety $T \subseteq \mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ (with coordinates \bar{y}) is called an algebraic torus if it is irreducible and is a subgroup of $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$.

Algebraic tori

- Let $\mathbb{G}_{\mathrm{m}}(\mathbb{C})$ be the multiplicative group $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map.
- A subvariety $T \subseteq \mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ (with coordinates \bar{y}) is called an algebraic torus if it is irreducible and is a subgroup of $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$.
- A torus of dimension d is isomorphic to $\mathbb{G}_{\mathrm{m}}^{d}(\mathbb{C})$.

Algebraic tori

- Let $\mathbb{G}_{\mathrm{m}}(\mathbb{C})$ be the multiplicative group $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map.
- A subvariety $T \subseteq \mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ (with coordinates \bar{y}) is called an algebraic torus if it is irreducible and is a subgroup of $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$.
- A torus of dimension d is isomorphic to $\mathbb{G}_{m}^{d}(\mathbb{C})$.
- Algebraic subgroups of $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ are defined by several equations of the form

$$
y_{1}^{m_{1}} \cdots y_{n}^{m_{n}}=1
$$

Algebraic tori

- Let $\mathbb{G}_{\mathrm{m}}(\mathbb{C})$ be the multiplicative group $\left(\mathbb{C}^{\times} ; \cdot, 1\right)$. It is an algebraic group, i.e. an algebraic variety where the group operation is given by a polynomial map.
- A subvariety $T \subseteq \mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ (with coordinates \bar{y}) is called an algebraic torus if it is irreducible and is a subgroup of $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$.
- A torus of dimension d is isomorphic to $\mathbb{G}_{\mathrm{m}}^{d}(\mathbb{C})$.
- Algebraic subgroups of $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ are defined by several equations of the form

$$
y_{1}^{m_{1}} \cdots y_{n}^{m_{n}}=1
$$

- For any such subgroup the connected component of the identity element is an irreducible algebraic subgroup of finite index and is a torus. Every such group is equal to a disjoint union of a torus and its torsion cosets.

Special and atypical subvarieties

Definition

Irreducible components of algebraic subgroups of $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$, that is, torsion cosets of tori, are the special varieties. These are defined by equations of the form $y_{1}^{m_{1}} \cdots y_{n}^{m_{n}}=\zeta$ where ζ is a root of unity.

Special and atypical subvarieties

Definition

Irreducible components of algebraic subgroups of $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$, that is, torsion cosets of tori, are the special varieties. These are defined by equations of the form $y_{1}^{m_{1}} \cdots y_{n}^{m_{n}}=\zeta$ where ζ is a root of unity.

Definition

For a variety $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ and a special variety $S \subseteq \mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$, a component X of the intersection $V \cap S$ is an atypical subvariety of V if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} S-n
$$

Special and atypical subvarieties

Definition

Irreducible components of algebraic subgroups of $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$, that is, torsion cosets of tori, are the special varieties. These are defined by equations of the form $y_{1}^{m_{1}} \cdots y_{n}^{m_{n}}=\zeta$ where ζ is a root of unity.

Definition

For a variety $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ and a special variety $S \subseteq \mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$, a component X of the intersection $V \cap S$ is an atypical subvariety of V if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} S-n
$$

Remark

If $T \subseteq V \subsetneq \mathbb{G}_{\mathrm{m}}^{n}$ and T is special then it is an atypical subvariety of V, for

$$
\operatorname{dim} T>\operatorname{dim} V+\operatorname{dim} T-n
$$

Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ contains only finitely many maximal atypical subvarieties.

Conjecture on Intersections with Tori

Conjecture (CIT; Zilber, Bombieri-Masser-Zannier, Pink)

Every algebraic variety in $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ contains only finitely many maximal atypical subvarieties.

Conjecture (CIT)

Let $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ be an algebraic variety. Then there is a finite collection Σ of proper special subvarieties of $\mathbb{G}_{\mathrm{m}}^{n}(\mathbb{C})$ such that every atypical subvariety X of V is contained in some $T \in \Sigma$.

Manin-Mumford conjecture

Theorem (Manin-Mumford for \mathbb{G}_{m}^{n}; Raynaud, Hindry)

A variety contains only finitely many maximal special subvarieties. In particular, an irreducible curve contains finitely many torsion points unless it is a torsion coset of a torus.

Manin-Mumford conjecture

Theorem (Manin-Mumford for \mathbb{G}_{m}^{n}; Raynaud, Hindry)

A variety contains only finitely many maximal special subvarieties. In particular, an irreducible curve contains finitely many torsion points unless it is a torsion coset of a torus.

Remark

Lang asked the following question in the 1960s. Assume $f(x, y)=0$ contains infinitely many points (ξ, η) whose coordinates are roots of unity. What can be said about f ?

Weak CIT

Theorem (Zilber, Kirby, Bombieri-Masser-Zannier)

Let V be an algebraic subvariety of $\mathbb{G}_{\mathrm{m}}^{n}$. Then there is a finite collection Σ of proper algebraic subtori of $\mathbb{G}_{\mathrm{m}}^{n}$ such that every atypical component of an intersection of V with an arbitrary coset of a torus is contained in a coset of some $T \in \Sigma$.

Weak CIT

Theorem (Zilber, Kirby, Bombieri-Masser-Zannier)

Let V be an algebraic subvariety of \mathbb{G}_{m}^{n}. Then there is a finite collection Σ of proper algebraic subtori of $\mathbb{G}_{\mathrm{m}}^{n}$ such that every atypical component of an intersection of V with an arbitrary coset of a torus is contained in a coset of some $T \in \Sigma$.

Theorem (Ax, 1971)

If $f_{1}(\bar{z}), \ldots, f_{n}(\bar{z})$ are complex analytic functions defined on some open domain $U \subseteq \mathbb{C}^{m}$, and no \mathbb{Q}-linear combination of f_{i} 's is constant, then

$$
\operatorname{td}_{\mathbb{Q}}\left(f_{1}, \ldots, f_{n}, e^{f_{1}}, \ldots, e^{f_{n}}\right) \geq n+\operatorname{rk}\left(\frac{\partial f_{i}}{\partial z_{j}}\right) .
$$

Γ-special and Γ-atypical sets

Definition

Let $\Gamma \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be a subgroup of finite rank.

- A Γ-special subvariety of \mathbb{G}_{m}^{n} is a translate of a torus by an element of Γ, i.e. a coset γT where T is a torus and $\gamma \in \Gamma$.
- For an algebraic variety $V \subseteq \mathbb{G}_{m}^{n}$, an atypical component X of an intersection $V \cap S$, where $S \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ is 「-special, is called 「-atypical if every coset of a subtorus of $\mathbb{G}_{\mathrm{m}}^{n}$ containing X is Γ-special, i.e. contains a point of Γ. For example, if $X \cap \Gamma \neq \emptyset$ then X is Γ-atypical.

Mordell-Lang

Theorem (Mordell-Lang for $\mathbb{G}_{\mathrm{m}}^{n}$; Laurent)

Let $\Gamma \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be a subgroup of finite rank. Then an algebraic variety $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ contains only finitely many maximal Γ-special subvarieties.

Mordell-Lang

Theorem (Mordell-Lang for \mathbb{G}_{m}^{n}; Laurent)

Let $\Gamma \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be a subgroup of finite rank. Then an algebraic variety $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ contains only finitely many maximal Γ-special subvarieties.

Theorem

If $V \cap \Gamma$ is Zariski dense in V then V is a finite union of Γ-special varieties.

Mordell-Lang

Theorem (Mordell-Lang for \mathbb{G}_{m}^{n}; Laurent)

Let $\Gamma \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be a subgroup of finite rank. Then an algebraic variety $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ contains only finitely many maximal Γ-special subvarieties.

Theorem

If $V \cap \Gamma$ is Zariski dense in V then V is a finite union of Γ-special varieties.

Remark

The Mordell-Lang conjecture for abelian varieties, combined with the Mordell-Weil theorem, implies the Mordell conjecture, namely, a curve of genus ≥ 2 defined over \mathbb{Q} has only finitely many rational points.

Mordell-Lang

Theorem (Mordell-Lang for \mathbb{G}_{m}^{n}; Laurent)

Let $\Gamma \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be a subgroup of finite rank. Then an algebraic variety $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ contains only finitely many maximal Γ-special subvarieties.

Theorem

If $V \cap \Gamma$ is Zariski dense in V then V is a finite union of Γ-special varieties.

Remark

The Mordell-Lang conjecture for abelian varieties, combined with the Mordell-Weil theorem, implies the Mordell conjecture, namely, a curve of genus ≥ 2 defined over \mathbb{Q} has only finitely many rational points.

The Mordell-Lang conjecture for semi-abelian varieties was proven in a series of papers by Faltings, Vojta, Hindry, McQuillan, Raynaud, Laurent.

Weak CIT for Γ-special varieties

```
Theorem (A., 2019)
Let }\Gamma\subseteq\mp@subsup{\mathbb{G}}{m}{n}\mathrm{ be a subgroup of finite rank. Then every subvariety V }\subseteq\mp@subsup{\mathbb{G}}{m}{n contains only finitely many maximal Г-atypical subvarieties.
```


Weak CIT for Γ-special varieties

Theorem (A., 2019)

Let $\Gamma \subseteq \mathbb{G}_{m}^{n}$ be a subgroup of finite rank. Then every subvariety $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ contains only finitely many maximal Г-atypical subvarieties.

Theorem (A., 2019)

Let $\Gamma \subseteq \mathbb{G}_{m}^{n}$ be a subgroup of finite rank. Then for every subvariety $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ there is a finite collection Σ of proper Γ-special subvarieties of $\mathbb{G}_{\mathrm{m}}^{n}$ such that every Γ-atypical subvariety of V is contained in some $T \in \Sigma$.

Sketch of proof

Lemma

Let $T \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be an algebraic torus and $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be an irreducible algebraic subvariety. Then the set

$$
C:=C_{T}:=\left\{c \in \mathbb{G}_{\mathrm{m}}^{n}: V \cap c T \text { is atypical in } \mathbb{G}_{\mathrm{m}}^{n}\right\}
$$

is a proper Zariski closed subset of $\mathbb{G}_{\mathrm{m}}^{n}$.

Sketch of proof

Lemma

Let $T \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be an algebraic torus and $V \subseteq \mathbb{G}_{\mathrm{m}}^{n}$ be an irreducible algebraic subvariety. Then the set

$$
C:=C_{T}:=\left\{c \in \mathbb{G}_{\mathrm{m}}^{n}: V \cap c T \text { is atypical in } \mathbb{G}_{\mathrm{m}}^{n}\right\}
$$

is a proper Zariski closed subset of $\mathbb{G}_{\mathrm{m}}^{n}$.

Proof.

For every $c \in \mathbb{G}_{\mathrm{m}}^{n}$ obviously $\operatorname{dim} c T=\operatorname{dim} T$. Hence

$$
C=\left\{c \in \mathbb{G}_{\mathrm{m}}^{n}: \operatorname{dim}(V \cap c T) \geq \operatorname{dim} V+\operatorname{dim} T-n+1\right\}
$$

which is Zariski closed in $\mathbb{G}_{\mathrm{m}}^{n}$.
One can show that a "generic" coset intersects V typically, hence $C \subsetneq \mathbb{G}_{\mathrm{m}}^{n}$.

Sketch of proof (continued)

- We may assume V is irreducible.

Sketch of proof (continued)

- We may assume V is irreducible.
- Let Σ_{0} be the finite collection of algebraic subtori of $\mathbb{G}_{\mathrm{m}}^{n}$ given by Weak CIT.

Sketch of proof (continued)

- We may assume V is irreducible.
- Let Σ_{0} be the finite collection of algebraic subtori of $\mathbb{G}_{\mathrm{m}}^{n}$ given by Weak CIT.
- Pick a 「-atypical subvariety X of V. Then $X \subseteq b T$ for some b and some $T \in \Sigma_{0}$.
- $b T \cap \Gamma \neq \emptyset$, hence $b T=\gamma T$ for some $\gamma \in \Gamma$.

Sketch of proof (continued)

- We may assume V is irreducible.
- Let Σ_{0} be the finite collection of algebraic subtori of \mathbb{G}_{m}^{n} given by Weak CIT.
- Pick a Γ-atypical subvariety X of V. Then $X \subseteq b T$ for some b and some $T \in \Sigma_{0}$.
- $b T \cap \Gamma \neq \emptyset$, hence $b T=\gamma T$ for some $\gamma \in \Gamma$.
- It can be shown that $V \cap \gamma T$ is atypical, hence $\gamma \in C_{T}$.

Sketch of proof (continued)

- We may assume V is irreducible.
- Let Σ_{0} be the finite collection of algebraic subtori of $\mathbb{G}_{\mathrm{m}}^{n}$ given by Weak CIT.
- Pick a 「-atypical subvariety X of V. Then $X \subseteq b T$ for some b and some $T \in \Sigma_{0}$.
- $b T \cap \Gamma \neq \emptyset$, hence $b T=\gamma T$ for some $\gamma \in \Gamma$.
- It can be shown that $V \cap \gamma T$ is atypical, hence $\gamma \in C_{T}$.
- Let Δ_{T} be the finite set of maximal Γ-special subvarieties of C_{T}. Observe that Δ_{T} consists of Γ-cosets of T.

Sketch of proof (continued)

- We may assume V is irreducible.
- Let Σ_{0} be the finite collection of algebraic subtori of $\mathbb{G}_{\mathrm{m}}^{n}$ given by Weak CIT.
- Pick a 「-atypical subvariety X of V. Then $X \subseteq b T$ for some b and some $T \in \Sigma_{0}$.
- $b T \cap \Gamma \neq \emptyset$, hence $b T=\gamma T$ for some $\gamma \in \Gamma$.
- It can be shown that $V \cap \gamma T$ is atypical, hence $\gamma \in C_{T}$.
- Let Δ_{T} be the finite set of maximal Γ-special subvarieties of C_{T}. Observe that Δ_{T} consists of Γ-cosets of T.
- Then $\gamma \in A \in \Delta_{T}$ for some A.

Sketch of proof (continued)

- We may assume V is irreducible.
- Let Σ_{0} be the finite collection of algebraic subtori of $\mathbb{G}_{\mathrm{m}}^{n}$ given by Weak CIT.
- Pick a Γ-atypical subvariety X of V. Then $X \subseteq b T$ for some b and some $T \in \Sigma_{0}$.
- $b T \cap \Gamma \neq \emptyset$, hence $b T=\gamma T$ for some $\gamma \in \Gamma$.
- It can be shown that $V \cap \gamma T$ is atypical, hence $\gamma \in C_{T}$.
- Let Δ_{T} be the finite set of maximal Γ-special subvarieties of C_{T}. Observe that Δ_{T} consists of Γ-cosets of T.
- Then $\gamma \in A \in \Delta_{T}$ for some A.
- Therefore $X \subseteq \gamma T \subseteq A T=A$.

Sketch of proof (continued)

- We may assume V is irreducible.
- Let Σ_{0} be the finite collection of algebraic subtori of $\mathbb{G}_{\mathrm{m}}^{n}$ given by Weak CIT.
- Pick a 「-atypical subvariety X of V. Then $X \subseteq b T$ for some b and some $T \in \Sigma_{0}$.
- $b T \cap \Gamma \neq \emptyset$, hence $b T=\gamma T$ for some $\gamma \in \Gamma$.
- It can be shown that $V \cap \gamma T$ is atypical, hence $\gamma \in C_{T}$.
- Let Δ_{T} be the finite set of maximal Γ-special subvarieties of C_{T}. Observe that Δ_{T} consists of Γ-cosets of T.
- Then $\gamma \in A \in \Delta_{T}$ for some A.
- Therefore $X \subseteq \gamma T \subseteq A T=A$.
- Then $\Sigma=\bigcup_{T \in \Sigma_{0}} \Delta_{T}$ works.

Generalisations

- The same can be done for semi-abelian varieties.

Generalisations

- The same can be done for semi-abelian varieties.
- More generally, we can work inside a (Γ-) special variety S, define atypicality with respect to S and obtain analogous results in that setting. A component X of an intersection $V \cap T$, where $V, T \subseteq S$, is atypical in S, if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} T-\operatorname{dim} S
$$

Generalisations

- The same can be done for semi-abelian varieties.
- More generally, we can work inside a (Г-)special variety S, define atypicality with respect to S and obtain analogous results in that setting. A component X of an intersection $V \cap T$, where $V, T \subseteq S$, is atypical in S, if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} T-\operatorname{dim} S
$$

- The modular j-function satisfies some functional equations that can be used to define special varieties, pose a modular analogue of CIT (which is a special case of the general Zilber-Pink conjecture), and prove similar weak statements there. There is a modular Mordell-Lang due to Habegger and Pila (2012), and an Ax-Schanuel for j due to Pila and Tsimerman (2015).

Generalisations

- The same can be done for semi-abelian varieties.
- More generally, we can work inside a (Г-)special variety S, define atypicality with respect to S and obtain analogous results in that setting. A component X of an intersection $V \cap T$, where $V, T \subseteq S$, is atypical in S, if

$$
\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} T-\operatorname{dim} S
$$

- The modular j-function satisfies some functional equations that can be used to define special varieties, pose a modular analogue of CIT (which is a special case of the general Zilber-Pink conjecture), and prove similar weak statements there. There is a modular Mordell-Lang due to Habegger and Pila (2012), and an Ax-Schanuel for j due to Pila and Tsimerman (2015).
- All aforementioned results are also true uniformly in parametric families.

Thank you

