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Part I: o-minimality
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Ordered field of the reals

Consider the ordered field of the reals (R; +, ·, <, 0, 1).

The formula ϕ(x) := ∃y(x2 − 1 ≥ y2) defines the set (−∞,−1) ∪ {−1} ∪ {1} ∪ (1,∞).

By quantifier elimination any formula ϕ(x) is equivalent to a Boolean combination of
formulas of the form p(x) = 0 and p(x) > 0 where p(X ) ∈ R[X ]. Hence every definable set
in R is a finite union of points and open intervals.

This means that all definable sets in one variable can be defined (with parameters) in the
language {<}.
Structures with this property are said to be o-minimal.
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Conventions

Throughout, M := (M;<, . . .) will be a structure with (M;<) |= DLO.

An interval is an open interval with endpoints in M ∪ {±∞}.
Definable means definable with parameters.

For a function f its graph is denoted by Γ(f ).

Let X ⊆ Mn. A function f : X → Mk is definable if Γ(f ) is a definable subset of Mn+k .

There is a natural topology on M – the order topology. On Mn we use the product topology.
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Definition of o-minimality

Definition
M = (M;<, . . .) is o-minimal if every definable subset of M is a finite union of points and
intervals.

Example
(Q;<), (R;<)

(Q;<,+)

(R; +, ·, <)

Example (Non-examples)
(R; +, ·, sin, <)

(Q; +, ·, <)

Cexp := (C; +, ·, exp) (here we identify C with R2)

The topology on an o-minimal structure is “tame”.
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Further examples

Let Ran be the expansion of (R; +, ·, <) by restricted analytic functions: for each real
analytic function defined on an open set containing [0, 1]n we have a function symbol for its
restriction to [0, 1]n. This is o-minimal.

sin |[0,2π] is definable in Ran, for sin(2πx)|[0,1] is definable.

More generally, if f : U → R is an analytic function defined on an open domain U ⊆Rn and
B ⊆U is a bounded closed box then f |B is definable in Ran.

Is sin
� 1
x

�
|(0,1) definable in Ran?

Rexp := (R; +, ·, exp, <) is o-minimal (Wilkie, 1996).

Ran,exp is the expansion of Ran by the exponential function exp : R → R>0. This is also
o-minimal.

Let D := {z ∈ C : 0 ≤ Im z < 2π}. Then the restriction of the complex exponentiation to D
is definable in Ran,exp.
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Monotonicity theorem

Theorem (Monotonicity theorem)
Let f : I → M be a definable function on an interval I = (a, b). Then there are points
a = a0 < a1 < . . . < an = b such that on each interval (ai , ai+1) the function f is either constant
or strictly monotonic and continuous.

Sketch proof.
It suffices to show that for any definable function f : I → M there is a subinterval of I on which f
is constant or strictly monotonic and continuous. Indeed, let X ⊆ I be the set of all points x such
that f is constant or strictly monotonic and continuous on a neighbourhood of x . If I \ X is
infinite then it contains an interval which is a contradiction. So I \ X is finite and we are done.

We prove that on an infinite subinterval f is constant or injective. We may assume all fibres
f −1(y) are finite, for otherwise f would be constant on a subinterval. Then f (I ) is infinite and so
contains an interval J. Define g : J → I by g(y) := min f −1(y). Then g is injective and the
image g(J) contains an interval K . Hence, f |K is injective.
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Uniform finiteness

For Y ⊆ Mn+1 and ā ∈ Mn let Yā := {y ∈ M : (ā, y) ∈ Y }.

Theorem
Let Y ⊆ M2 be a definable set. Then there is a number N such that for any a ∈ M if Ya is finite
then |Ya| ≤ N.

Exercise
Let Y ⊆ M2 be definable such that Ya is finite for each a. Show that there are points
−∞ = a0 < a1 < . . . < ak+1 = +∞ such that the intersection of Y with each vertical strip
(ai , ai+1)×M has the form Γ(fi,1) ∪ . . . ∪ Γ(fi,mi

) where each fi,j : (ai , ai+1) → M is a definable
continuous function and with fi,1(x) < . . . < fi,mi

(x) for all x ∈ (ai , ai+1).

Vahagn Aslanyan (UEA) o-minimality 24 November 2020 8 / 27



Cells

For a definable set X ⊆Mn let C(X ) := {f : X → M : f is definable and continuous}. Let
also C∞(X ) = C(X )∪ {−∞,+∞} where −∞,+∞ are regarded as constant functions on X .

For f , g ∈ C∞(X ) write f < g if f (x̄) < g(x̄) for all x̄ ∈ X . In this case define
(f , g)X := {(x̄ , y) ∈ X ×M : f (x̄) < y < g(x̄)}.

Definition
Let ī := (i1, . . . , im) ∈ {0, 1}m. An ī-cell is a definable subset of Mm defined inductively on m as
follows.

A (0)-cell is a point and a (1)-cell is an open interval in M.

Suppose ī-cells have been defined. Then an (ī , 0)-cell is the graph Γ(f ) of a function
f ∈ C(X ) where X is an ī-cell. An (ī , 1)-cell is a set of the form (f , g)X where X is an ī-cell
and f , g ∈ C∞(X ) and f < g .

A cell is an ī-cell for some ī .
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Cell decomposition

Definition
A decomposition of Mn is a partition of Mn into finitely many cells defined as follows by
induction.

A decomposition of M is a partition of M into a union of finitely many disjoint cells.

A decomposition of Mn+1 is a partition of Mn+1 into finitely many cells the projections of
which to the first n coordinates form a decomposition of Mn.

Theorem
In For any definable sets A1, . . . ,Ak ⊆Mn there is a decomposition of Mn which partitions each

Ai .

IIn Given a definable function f : X → M with X ⊆Mn, there is a decomposition of Mn

partitioning X such that for any cell C ⊆X the restriction f |C : C → M is continuous.
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Definable sets in R2
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Consequences

Theorem
Let Y ⊆ Mn+1 be a definable set. Then there is a number k such that for any ā ∈ Mn if Yā is
finite then |Yā| ≤ k. Hence, the quantifier ∃∞ is first-order expressible.

Theorem
Let M and N be elementarily equivalent ordered structures. If M is o-minimal then so is N .

Proof.
Let φ(x , b̄) define a set Xb̄ in N. The boundary of Xb̄ is definable (uniformly in b̄) by a formula
ψ(x , b̄). For every ā ∈ M|b̄| the formula ψ(x , ā) defines the boundary of φ(x , ā) and is finite. By
uniform finiteness, ψ(x , ā) has at most k elements for some k independent of ā. This is part of
the theory of M, hence also of the theory of N . Thus, ψ(x , b̄) has at most k elements, which
means Xb̄ is a union of finitely many points and intervals.
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Consequences

Definition
A subset X ⊆Mn is definably connected if there are no definable open sets U1,U2 such that
X ⊆U1 ∪ U2, X ∩ U1 ∩ U2 = ∅ and X ∩ U1 �= ∅,X ∩ U2 �= ∅.
For a definable set X ⊆Mn a definably connected component of X is a maximal definably
connected subset of X .

Proposition
Every definable set X ⊆Mn has finitely many definably connected components. They are
definable, open and closed in X and form a partition of X .

Proof.
Let X = ∪i Ci be a cell decomposition of X , and let Y be a definably connected component of X .
Each Ci is definably connected, hence either Ci ⊆Y or Ci ∩ Y = ∅. Therefore, Y is a union of
cells.

Proposition
In a parametric family of definable sets the number of connected components is bounded.
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Dimension

Definition
For a definable set X let dimX := max{i1 + . . .+ im : X contains an (i1, . . . , im)-cell}. We also
set dim ∅ = −∞.

A definable set has dimension 0 if and only if it is finite.

dimMn = n.

Let X ⊆Mn be definable. Then dimX is the largest integer k for which some projection of X
to Mk has non-empty interior in Mk .

Definition
For a subset A⊆M the algebraic closure of A is the union of all finite definable sets over A, and
the definable closure of A is the union of all definable singletons over A. For instance, in (C; +, ·)
we have

√
2 ∈ acl(Q) \ dcl(Q), while in (R; +, ·) we have

√
2 ∈ dcl(Q).

Theorem
In an o-minimal structure acl = dcl, and this operator defines a pregeometry. Its dimension agrees
with the dimension function defined above.
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Maps with finite fibres

Theorem
Let X ⊆Mn be definable and let f : X → Mk be a definable map such that for any x ∈ X the
fibre f −1(f (x)) is finite. Then dim f (X ) = dimX .

Sketch proof.
Let Γ�(f ) := {(f (x), x) : x ∈ X} and let π : Γ�(f ) → f (X ) be the projection map. Observe that
the map x �→ (f (x), x) is a definable bijection from X to Γ�(f ), hence dimX = dim Γ�(f ). Write
Γ�(f ) = ∪i Ci using cell decomposition. For each cell Ci the projection π(Ci ) is a cell and for
y ∈ π(Ci ) the fibre {x ∈ X : (y , x) ∈ Ci} is also a cell. Since it is finite, it must be a singleton.
Therefore, π is a bijection from Ci to π(Ci ), so dimCi = dimπ(Ci ). Hence
dim f (X ) = dim Γ�(f ).
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Exercises

Let M = (M;<, . . .) be an o-minimal structure.
1 Find a cell decomposition of R2 \X where X is a finite set.
2 Does the cell decomposition theorem hold for infinitely many definable sets A1,A2, . . .?
3 Let π : Mn+k → Mk be the projection on the firs n coordinates. Prove that if C ⊆Mn+k is a

cell and a ∈ πC then Ca = {y ∈ Mk : (a, y) ∈ C} is a cell.
4 Show that a cell in Mn of dimension n is open.
5 Show that cells are definably connected.
6 Show that if R is an o-minimal expansion of (R;<) then a definable set X ⊆Rk is connected

if and only if it is definably connected.
7 Let X ⊆Mn be definable. Show that dim(X̄ \ X ) < dimX , where X̄ is the topological

closure of X .
8 Show that if X ⊆Mn is a cell of dimension k then it is definably homeomorphic to an open

subset of Mk .
9 Show that if X ⊆Mn,Y ⊆Mk are definable sets and there is a definable bijection between

them then dimX = dimY .
10 Let X ,Y ⊆Mn be definable. Show that dim(X ∪ Y ) = max{dimX , dimY }.
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Part II: Applications
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Holomorphic maps with discrete fibres

Theorem
Let U ⊆Cn be an open domain and let f : U → Cn be a holomorphic map all fibres of which are
discrete. Then f (U) has a non-empty interior.

This is a weak version of Remmert’s open mapping theorem.

Sketch proof.

Identify C with R2. For some box B ⊆U the restriction f |B is definable in Ran. Hence, by the
“fibre dimension theorem” for o-minimal structures, dimR f (B) = dimR B = 2n. Hence
f (B)⊆R2n contains a cell of dimension 2n, which is open.
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Schanuel’s conjecture

Conjecture (Schanuel’s conjecture)
Let z1, . . . , zn ∈ C be Q-linearly independent. Then

tdQ Q(z1, . . . , zn, e
z1 , . . . , ezn ) ≥ n.

Here td stands for transcendence degree. Recall that for two fields K ⊆ L, some elements
a1, . . . , an ∈ L are called algebraically independent over K if p(a1, . . . , an) �= 0 for any
non-zero polynomial p with coefficients from K , and tdK L (often denoted by td(L/K)) is
the cardinality of a maximal set of algebraically independent elements from L over K .

Schanuel’s conjecture is considered out of reach.

Zilber explored the model theory of Cexp := (C; +, ·, exp), and constructed algebraically
closed fields of characteristic 0 with a unary function, called pseudo-exponentiation, which
mimics some of the basic properties of the complex exponential function and satisfies an
analogue of Schanuel’s conjecture.

Zilber’s work gave rise to two major conjectures: the Exponential Algebraic Closedness
conjecture, and the Conjecture on Intersections with Tori.

A functional analogue of Schanuel’s conjecture, known as the Ax-Schanuel theorem, can be
proven using o-minimality.
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Schanuel’s conjecture over R

Conjecture (SCR)
Let x1, . . . , xn ∈ R be Q-linearly independent. Then tdQ Q(x1, . . . , xn, ex1 , . . . , exn ) ≥ n.

Let Texp := Th(Rexp). Tarski asked if Texp is decidable. Macintyre and Wilkie proved that if
Schanuel’s conjecture holds for the reals then Texp is decidable.

A natural question is whether SCR is part of Texp. For this, one needs a uniform version of
the conjecture.

Conjecture (SCR)

Let V ⊆R2n be an algebraic variety over Q with dimV < n. If (x1, . . . , xn, ex1 , . . . , exn ) ∈ V then
there are integers m1, . . . ,mn, not all zero, such that

�
k mkxk = 0.

Conjecture (Uniform SCR)

Let V ⊆R2n be an algebraic variety over Q with dimV < n. Then there is a natural number N
such that if (x1, . . . , xn, ex1 , . . . , exn ) ∈ V then there are integers m1, . . . ,mn ∈ [−N,N], not all
zero, such that

�
k mkxk = 0.
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SCR ⇒ USCR

Theorem (Kirby–Zilber, 2004)
Schanuel’s conjecture over R implies its uniform version.

If we work in an expansion of R and in the definition of cells we require the functions f , g to be
analytic then we get analytic cells. It is know that Rexp has analytic cell decomposition.

Lemma
Let R be an expansion of R. If C ⊆Rn is a cell of dimension m then there are an open box
B ⊆ Rm (a product of m open intervals in R) and a definable homeomorphism θ : C → B. If C is
an analytic cell then θ can be chosen to be an analytic diffeomorphism.

Lemma
Let R be an expansion of R and let C ⊆Rn be an analytic cell. For any points a, b ∈ C there is a
definable analytic path from a to b contained in C , that is, an analytic map γ : [0, 1] → C such
that γ(0) = a, γ(1) = b.
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Proof of the theorem

Assume Schanuel’s conjecture over R.

Let V ⊆R2n be an algebraic variety over Q of dimension < n. The set
W := {x̄ ∈ Rn : (x̄ , ex̄ ) ∈ V } is definable in Rexp, hence can be decomposed into a finite
union of analytic cells.

Pick a cell C ⊆W and points ā, b̄ ∈ C . Let γ : [0, 1] → C be a definable analytic path from
ā to b̄ in C .

By SCR every point x̄ ∈ Im(γ) satisfies a linear equation
�

k mkxk = 0. Since there are
countably many possible linear equations, one of them must be satisfied by infinitely many
points. Thus for some linear map h(x̄) =

�
k mkxk the set {t ∈ [0, 1] : h(γ(t)) = 0} is

infinite.

It is a definable subset of [0, 1], hence it must contain an interval. This means
h ◦ γ : [0, 1] → R is zero on an open interval. Since it is analytic, it must be identically zero
on [0, 1]. Therefore h(ā) = h(b̄) = 0.

We conclude that h(x̄) = 0 for any x̄ ∈ C , for ā, b̄ were arbitrary points in C .

Since W has finitely many cells, every point of W must satisfy one of finitely many linear
equations over Z.
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Atypical intersections

Theorem (Dimension of intersection)
Let V ,W ⊆ Cn be irreducible varieties. Then any non-empty irreducible component X of the
intersection V ∩W satisfies dimX ≥ dimV + dimW − n.

Definition (Atypical intersection)
Let V ,W be varieties in Cn. A non-empty irreducible component X of V ∩W is said to be
typical if dimX = dimV + dimW − n and atypical if dimX > dimV + dimW − n.

Two curves in C2 are likely to intersect, while two curves in C3 are not. When they do, we have
an atypical intersection.
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CIT

Definition
An algebraic torus is an irreducible algebraic subgroup of (C×)n for some positive integer n,
where C× is the multiplicative group of C .

A variety defined by equations of the form ym1
1 · · · ymn

n = 1, where mi ∈ Z, is a subgroup of
(C×)n and can be decomposed into a disjoint union of an algebraic torus (the connected
component of the identity element) and its torsion cosets. For example, y 3

1 y
6
2 = 1 is the union of

three irreducible varieties given by y1y2
2 = ζ where ζ3 = 1.

Note that an algebraic torus is the image of a Q-linear subspace of Cn under the exponential
function.

Definition
Let V ⊆ (C×)n be an algebraic variety. A subvariety X ⊆ V is atypical if it is an atypical
component of an intersection V ∩ T where T ⊆ (C×)n is a torsion coset of a torus.

Conjecture (CIT)

Every algebraic variety V ⊆ (C×)n contains only finitely many maximal atypical subvarieties.
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Some remarks

CIT is the difference between Schanuel’s conjecture (over C) and its uniform version.

It was posed by Zilber, then independently by Bombieri–Masser–Zannier.

Later, Pink proposed a more general conjecture. The general form is now known as the
Zilber–Pink conjecture.

Many special cases are known, e.g. the Mordell–Lang and the Manin–Mumford conjectures.

Many weak versions and special cases of the Zilber–Pink conjecture have been proven using
o-minimality. An important ingredient of those proofs is the Pila–Wilkie counting theorem.
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Pila–Wilkie counting theorem

Definition (Height)
For a, b ∈ Z with gcd(a, b) = 1 define H(a/b) = max(|a|, |b|), and for x̄ ∈ Qn set
H(x̄) = maxi H(xi ).
For a set Z ⊆Rn and T > 0 let Z(Q,T ) := {x ∈ Z ∩Qn : H(x̄) ≤ T} and N(Z ,T ) := |Z(Q,T )|.

Definition
For a set Z ⊆Rn the algebraic part of Z , denoted Z alg, is the union of all positive dimensional
connected semi-algebraic subsets of Z .

Theorem
Let Z ⊆Rn be definable in an o-minimal expansion of R, and let � > 0. Then there is a constant
c = c(Z , �) such that for all T we have N(Z \ Z alg,T ) ≤ cT �.

Example

Let Z ⊆R2 be given by y = 2x . Then Z alg = ∅ (why?). If (x , y) ∈ Z ∩ Q2 then (x , y) ∈ Z2.
Hence N(Z ,T ) grows logarithmically in T .
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An example

Theorem
If a variety V ⊆(C×)n contains no cosets of positive dimensional algebraic tori, then V contains
finitely many torsion points, i.e. points all coordinates of which are roots of unity.

Let π : Cn → (C×)n be the map (z1, . . . , zn) �→ (e2πiz1 , . . . , e2πizn ).

π(z̄) is a torsion point in (C×)n iff z̄ ∈ Qn.

If W ⊆(C×)2 is given by w2
1w

3
2 = 1 then π−1(W ) is the union of all lines

2z1 + 3z2 = k, k ∈ Z. So π−1(W )alg = π−1(W ).

More generally, for an algebraic variety W ⊆(C×)n the set π−1(W )alg is the union of
translates of positive dimensional Q-linear spaces contained in π−1(W ).

π is not definable in any o-minimal structure but its restriction to
F = {z ∈ C : 0 ≤ Re z < 1}n is definable in Ran,exp.

Let Z := π−1(V ) ∩ F . Then Z alg is a union of intersections of translates of Q-linear spaces
with F . These are indeed semi-algebraic.

In particular, if V does not contain any cosets of algebraic subtori then π−1(V )alg = ∅ and
Z alg = ∅.
So the Pila–Wilkie theorem gives a bound on the number of rational points in Z of bounded
height, that is, Z contains “few” rational points.

One can get from this to a finiteness statement.
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