Introduction to o-minimality and applications An excursion into Model Theory and its applications LMS online lecture series - Fall 2020

Vahagn Aslanyan

University of East Anglia

24 November 2020

Image: A matrix

Part I: o-minimality

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- \bullet Consider the ordered field of the reals ($\mathbb{R};+,\cdot,<,0,1).$
- The formula $\varphi(x) := \exists y(x^2 1 \ge y^2)$ defines the set $(-\infty, -1) \cup \{-1\} \cup \{1\} \cup (1, \infty)$.
- By quantifier elimination any formula φ(x) is equivalent to a Boolean combination of formulas of the form p(x) = 0 and p(x) > 0 where p(X) ∈ ℝ[X]. Hence every definable set in ℝ is a finite union of points and open intervals.
- This means that all definable sets in one variable can be defined (with parameters) in the language $\{<\}$.
- Structures with this property are said to be o-minimal.

イロト イポト イヨト イヨト

- Throughout, $\mathcal{M} := (M; <, ...)$ will be a structure with $(M; <) \models \mathsf{DLO}$.
- An *interval* is an open interval with endpoints in $M \cup \{\pm \infty\}$.
- Definable means definable with parameters.
- For a function f its graph is denoted by $\Gamma(f)$.
- Let $X \subseteq M^n$. A function $f : X \to M^k$ is definable if $\Gamma(f)$ is a definable subset of M^{n+k} .
- There is a natural topology on M the order topology. On M^n we use the product topology.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition

 $\mathcal{M} = (M; <, ...)$ is *o-minimal* if every definable subset of M is a finite union of points and intervals.

Example

- (ℚ; <), (ℝ; <)
- ($\mathbb{Q}; <, +$)
- ($\mathbb{R}; +, \cdot, <$)

Example (Non-examples)

- $(\mathbb{R}; +, \cdot, \sin, <)$
- $(\mathbb{Q}; +, \cdot, <)$
- $\bullet \ \mathbb{C}_{\text{exp}} := (\mathbb{C}; +, \cdot, \text{exp})$ (here we identify \mathbb{C} with $\mathbb{R}^2)$

The topology on an o-minimal structure is "tame".

3

<ロト < 回ト < 回ト < 回ト < 回ト</p>

- Let \mathbb{R}_{an} be the expansion of $(\mathbb{R}; +, \cdot, <)$ by restricted analytic functions: for each real analytic function defined on an open set containing $[0, 1]^n$ we have a function symbol for its restriction to $[0, 1]^n$. This is o-minimal.
- sin $|_{[0,2\pi]}$ is definable in \mathbb{R}_{an} , for sin $(2\pi x)|_{[0,1]}$ is definable.
- More generally, if $f: U \to \mathbb{R}$ is an analytic function defined on an open domain $U \subseteq \mathbb{R}^n$ and $B \subseteq U$ is a bounded closed box then $f|_B$ is definable in \mathbb{R}_{an} .
- Is sin $\left(\frac{1}{x}\right)|_{(0,1)}$ definable in \mathbb{R}_{an} ?
- $\mathbb{R}_{exp} := (\mathbb{R}; +, \cdot, exp, <)$ is o-minimal (Wilkie, 1996).
- $\mathbb{R}_{an,exp}$ is the expansion of \mathbb{R}_{an} by the exponential function $exp: \mathbb{R} \to \mathbb{R}^{>0}$. This is also o-minimal.
- Let $D := \{z \in \mathbb{C} : 0 \le \text{Im } z < 2\pi\}$. Then the restriction of the complex exponentiation to D is definable in $\mathbb{R}_{an,exp}$.

(a) < (a)

Theorem (Monotonicity theorem)

Let $f: I \to M$ be a definable function on an interval I = (a, b). Then there are points $a = a_0 < a_1 < \ldots < a_n = b$ such that on each interval (a_i, a_{i+1}) the function f is either constant or strictly monotonic and continuous.

Sketch proof.

It suffices to show that for any definable function $f: I \to M$ there is a subinterval of I on which f is constant or strictly monotonic and continuous. Indeed, let $X \subseteq I$ be the set of all points x such that f is constant or strictly monotonic and continuous on a neighbourhood of x. If $I \setminus X$ is infinite then it contains an interval which is a contradiction. So $I \setminus X$ is finite and we are done.

We prove that on an infinite subinterval f is constant or injective. We may assume all fibres $f^{-1}(y)$ are finite, for otherwise f would be constant on a subinterval. Then f(I) is infinite and so contains an interval J. Define $g: J \to I$ by $g(y) := \min f^{-1}(y)$. Then g is injective and the image g(J) contains an interval K. Hence, $f|_K$ is injective.

For $Y \subseteq M^{n+1}$ and $\bar{a} \in M^n$ let $Y_{\bar{a}} := \{y \in M : (\bar{a}, y) \in Y\}$.

Theorem

Let $Y \subseteq M^2$ be a definable set. Then there is a number N such that for any $a \in M$ if Y_a is finite then $|Y_a| \leq N$.

Exercise

Let $Y \subseteq M^2$ be definable such that Y_a is finite for each a. Show that there are points $-\infty = a_0 < a_1 < \ldots < a_{k+1} = +\infty$ such that the intersection of Y with each vertical strip $(a_i, a_{i+1}) \times M$ has the form $\Gamma(f_{i,1}) \cup \ldots \cup \Gamma(f_{i,m_i})$ where each $f_{i,j} : (a_i, a_{i+1}) \to M$ is a definable continuous function and with $f_{i,1}(x) < \ldots < f_{i,m_i}(x)$ for all $x \in (a_i, a_{i+1})$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Cells

- For a definable set $X \subseteq M^n$ let $C(X) := \{f : X \to M : f \text{ is definable and continuous}\}$. Let also $C_{\infty}(X) = C(X) \cup \{-\infty, +\infty\}$ where $-\infty, +\infty$ are regarded as constant functions on X.
- For $f, g \in C_{\infty}(X)$ write f < g if $f(\bar{x}) < g(\bar{x})$ for all $\bar{x} \in X$. In this case define $(f, g)_X := \{(\bar{x}, y) \in X \times M : f(\bar{x}) < y < g(\bar{x})\}.$

Definition

Let $\overline{i} := (i_1, \ldots, i_m) \in \{0, 1\}^m$. An \overline{i} -cell is a definable subset of M^m defined inductively on m as follows.

- A (0)-cell is a point and a (1)-cell is an open interval in M.
- Suppose \overline{i} -cells have been defined. Then an $(\overline{i}, 0)$ -cell is the graph $\Gamma(f)$ of a function $f \in C(X)$ where X is an \overline{i} -cell. An $(\overline{i}, 1)$ -cell is a set of the form $(f, g)_X$ where X is an \overline{i} -cell and $f, g \in C_{\infty}(X)$ and f < g.
- A *cell* is an \overline{i} -cell for some \overline{i} .

Cell decomposition

Definition

A *decomposition* of M^n is a partition of M^n into finitely many cells defined as follows by induction.

- A decomposition of M is a partition of M into a union of finitely many disjoint cells.
- A decomposition of M^{n+1} is a partition of M^{n+1} into finitely many cells the projections of which to the first *n* coordinates form a decomposition of M^n .

Theorem

- I_n For any definable sets $A_1, \ldots, A_k \subseteq M^n$ there is a decomposition of M^n which partitions each A_i .
- II_n Given a definable function $f : X \to M$ with $X \subseteq M^n$, there is a decomposition of M^n partitioning X such that for any cell $C \subseteq X$ the restriction $f|_C : C \to M$ is continuous.

Image: A math the state of t

Definable sets in \mathbb{R}^2

Theorem

Let $Y \subseteq M^{n+1}$ be a definable set. Then there is a number k such that for any $\bar{a} \in M^n$ if $Y_{\bar{a}}$ is finite then $|Y_{\bar{a}}| \leq k$. Hence, the quantifier \exists^{∞} is first-order expressible.

Theorem

Let \mathcal{M} and \mathcal{N} be elementarily equivalent ordered structures. If \mathcal{M} is o-minimal then so is \mathcal{N} .

Proof.

Let $\phi(x, \overline{b})$ define a set $X_{\overline{b}}$ in N. The boundary of $X_{\overline{b}}$ is definable (uniformly in \overline{b}) by a formula $\psi(x, \overline{b})$. For every $\overline{a} \in M^{|\overline{b}|}$ the formula $\psi(x, \overline{a})$ defines the boundary of $\phi(x, \overline{a})$ and is finite. By uniform finiteness, $\psi(x, \overline{a})$ has at most k elements for some k independent of \overline{a} . This is part of the theory of \mathcal{M} , hence also of the theory of \mathcal{N} . Thus, $\psi(x, \overline{b})$ has at most k elements, which means $X_{\overline{b}}$ is a union of finitely many points and intervals.

< □ > < 同 > < 回 > < Ξ > < Ξ

Definition

- A subset $X \subseteq M^n$ is *definably connected* if there are no definable open sets U_1, U_2 such that $X \subseteq U_1 \cup U_2, X \cap U_1 \cap U_2 = \emptyset$ and $X \cap U_1 \neq \emptyset, X \cap U_2 \neq \emptyset$.
- For a definable set X ⊆ Mⁿ a definably connected component of X is a maximal definably connected subset of X.

Proposition

Every definable set $X \subseteq M^n$ has finitely many definably connected components. They are definable, open and closed in X and form a partition of X.

Proof.

Let $X = \bigcup_i C_i$ be a cell decomposition of X, and let Y be a definably connected component of X. Each C_i is definably connected, hence either $C_i \subseteq Y$ or $C_i \cap Y = \emptyset$. Therefore, Y is a union of cells.

Proposition

In a parametric family of definable sets the number of connected components is bounded.

イロト イポト イヨト イヨト

Definition

For a definable set X let dim $X := \max\{i_1 + \ldots + i_m : X \text{ contains an } (i_1, \ldots, i_m)\text{-cell}\}$. We also set dim $\emptyset = -\infty$.

- A definable set has dimension 0 if and only if it is finite.
- dim $M^n = n$.
- Let X ⊆ Mⁿ be definable. Then dim X is the largest integer k for which some projection of X to M^k has non-empty interior in M^k.

Definition

For a subset $A \subseteq M$ the algebraic closure of A is the union of all finite definable sets over A, and the definable closure of A is the union of all definable singletons over A. For instance, in $(\mathbb{C}; +, \cdot)$ we have $\sqrt{2} \in acl(\mathbb{Q}) \setminus dcl(\mathbb{Q})$, while in $(\mathbb{R}; +, \cdot)$ we have $\sqrt{2} \in dcl(\mathbb{Q})$.

Theorem

In an o-minimal structure acl = dcl, and this operator defines a pregeometry. Its dimension agrees with the dimension function defined above.

Maps with finite fibres

Theorem

Let $X \subseteq M^n$ be definable and let $f : X \to M^k$ be a definable map such that for any $x \in X$ the fibre $f^{-1}(f(x))$ is finite. Then dim $f(X) = \dim X$.

Sketch proof.

Let $\Gamma'(f) := \{(f(x), x) : x \in X\}$ and let $\pi : \Gamma'(f) \to f(X)$ be the projection map. Observe that the map $x \mapsto (f(x), x)$ is a definable bijection from X to $\Gamma'(f)$, hence dim $X = \dim \Gamma'(f)$. Write $\Gamma'(f) = \bigcup_i C_i$ using cell decomposition. For each cell C_i the projection $\pi(C_i)$ is a cell and for $y \in \pi(C_i)$ the fibre $\{x \in X : (y, x) \in C_i\}$ is also a cell. Since it is finite, it must be a singleton. Therefore, π is a bijection from C_i to $\pi(C_i)$, so dim $C_i = \dim \pi(C_i)$. Hence dim $f(X) = \dim \Gamma'(f)$.

Exercises

Let $\mathcal{M} = (M; <, ...)$ be an o-minimal structure.

- **③** Find a cell decomposition of $\mathbb{R}^2 \setminus X$ where X is a finite set.
- **2** Does the cell decomposition theorem hold for infinitely many definable sets A_1, A_2, \ldots ?
- **②** Let $\pi : M^{n+k} \to M^k$ be the projection on the firs *n* coordinates. Prove that if *C* ⊆ *M*^{*n*+*k*} is a cell and *a* ∈ *πC* then *C*_{*a*} = {*y* ∈ *M*^{*k*} : (*a*, *y*) ∈ *C*} is a cell.
- Show that a cell in Mⁿ of dimension n is open.
- Show that cells are definably connected.
- Show that if R is an o-minimal expansion of (R; <) then a definable set X ⊆ R^k is connected if and only if it is definably connected.
- Q Let X ⊆ Mⁿ be definable. Show that dim(X \ X) < dim X, where X is the topological closure of X.</p>
- Show that if X ⊆ Mⁿ is a cell of dimension k then it is definably homeomorphic to an open subset of M^k.
- **9** Show that if $X \subseteq M^n$, $Y \subseteq M^k$ are definable sets and there is a definable bijection between them then dim $X = \dim Y$.
- [●] Let $X, Y \subseteq M^n$ be definable. Show that dim $(X \cup Y) = \max\{\dim X, \dim Y\}$.

イロト イヨト イヨト イヨト

Part II: Applications

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

Let $U \subseteq \mathbb{C}^n$ be an open domain and let $f : U \to \mathbb{C}^n$ be a holomorphic map all fibres of which are discrete. Then f(U) has a non-empty interior.

This is a weak version of Remmert's open mapping theorem.

Sketch proof.

Identify \mathbb{C} with \mathbb{R}^2 . For some box $B \subseteq U$ the restriction $f|_B$ is definable in \mathbb{R}_{an} . Hence, by the "fibre dimension theorem" for o-minimal structures, dim_{\mathbb{R}} $f(B) = \dim_{\mathbb{R}} B = 2n$. Hence $f(B) \subseteq \mathbb{R}^{2n}$ contains a cell of dimension 2n, which is open.

< D > < A >

Conjecture (Schanuel's conjecture)

Let $z_1, \ldots, z_n \in \mathbb{C}$ be \mathbb{Q} -linearly independent. Then

$$\operatorname{td}_{\mathbb{Q}}\mathbb{Q}(z_1,\ldots,z_n,e^{z_1},\ldots,e^{z_n})\geq n.$$

- Here td stands for *transcendence degree*. Recall that for two fields $K \subseteq L$, some elements $a_1, \ldots, a_n \in L$ are called algebraically independent over K if $p(a_1, \ldots, a_n) \neq 0$ for any non-zero polynomial p with coefficients from K, and $td_K L$ (often denoted by td(L/K)) is the cardinality of a maximal set of algebraically independent elements from L over K.
- Schanuel's conjecture is considered out of reach.
- Zilber explored the model theory of $\mathbb{C}_{exp} := (\mathbb{C}; +, \cdot, exp)$, and constructed algebraically closed fields of characteristic 0 with a unary function, called *pseudo-exponentiation*, which mimics some of the basic properties of the complex exponential function and satisfies an analogue of Schanuel's conjecture.
- Zilber's work gave rise to two major conjectures: the Exponential Algebraic Closedness conjecture, and the Conjecture on Intersections with Tori.
- A functional analogue of Schanuel's conjecture, known as the Ax-Schanuel theorem, can be proven using o-minimality.

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Conjecture $(SC_{\mathbb{R}})$

Let $x_1, \ldots, x_n \in \mathbb{R}$ be \mathbb{Q} -linearly independent. Then $td_{\mathbb{Q}} \mathbb{Q}(x_1, \ldots, x_n, e^{x_1}, \ldots, e^{x_n}) \ge n$.

- Let $T_{exp} := Th(\mathbb{R}_{exp})$. Tarski asked if T_{exp} is decidable. Macintyre and Wilkie proved that if Schanuel's conjecture holds for the reals then T_{exp} is decidable.
- \bullet A natural question is whether $SC_{\mathbb{R}}$ is part of $\mathcal{T}_{exp}.$ For this, one needs a uniform version of the conjecture.

Conjecture $(SC_{\mathbb{R}})$

Let $V \subseteq \mathbb{R}^{2n}$ be an algebraic variety over \mathbb{Q} with dim V < n. If $(x_1, \ldots, x_n, e^{x_1}, \ldots, e^{x_n}) \in V$ then there are integers m_1, \ldots, m_n , not all zero, such that $\sum_k m_k x_k = 0$.

Conjecture (Uniform $SC_{\mathbb{R}}$)

Let $V \subseteq \mathbb{R}^{2n}$ be an algebraic variety over \mathbb{Q} with dim V < n. Then there is a natural number N such that if $(x_1, \ldots, x_n, e^{x_1}, \ldots, e^{x_n}) \in V$ then there are integers $m_1, \ldots, m_n \in [-N, N]$, not all zero, such that $\sum_k m_k x_k = 0$.

<ロト < 回ト < 回ト < 回ト < 回ト</p>

Theorem (Kirby–Zilber, 2004)

Schanuel's conjecture over \mathbb{R} implies its uniform version.

If we work in an expansion of \mathbb{R} and in the definition of cells we require the functions f, g to be analytic then we get *analytic cells*. It is know that \mathbb{R}_{exp} has analytic cell decomposition.

Lemma

Let \mathcal{R} be an expansion of \mathbb{R} . If $C \subseteq \mathbb{R}^n$ is a cell of dimension m then there are an open box $B \subseteq \mathbb{R}^m$ (a product of m open intervals in \mathbb{R}) and a definable homeomorphism $\theta : C \to B$. If C is an analytic cell then θ can be chosen to be an analytic diffeomorphism.

Lemma

Let \mathcal{R} be an expansion of \mathbb{R} and let $C \subseteq \mathbb{R}^n$ be an analytic cell. For any points $a, b \in C$ there is a definable analytic path from a to b contained in C, that is, an analytic map $\gamma : [0,1] \to C$ such that $\gamma(0) = a, \gamma(1) = b$.

- $\bullet\,$ Assume Schanuel's conjecture over $\mathbb R.$
- Let $V \subseteq \mathbb{R}^{2n}$ be an algebraic variety over \mathbb{Q} of dimension < n. The set $W := \{\bar{x} \in \mathbb{R}^n : (\bar{x}, e^{\bar{x}}) \in V\}$ is definable in \mathbb{R}_{exp} , hence can be decomposed into a finite union of analytic cells.
- Pick a cell $C \subseteq W$ and points $\bar{a}, \bar{b} \in C$. Let $\gamma : [0, 1] \to C$ be a definable analytic path from \bar{a} to \bar{b} in C.
- By SC_R every point x̄ ∈ Im(γ) satisfies a linear equation ∑_k m_kx_k = 0. Since there are countably many possible linear equations, one of them must be satisfied by infinitely many points. Thus for some linear map h(x̄) = ∑_k m_kx_k the set {t ∈ [0,1] : h(γ(t)) = 0} is infinite.
- It is a definable subset of [0, 1], hence it must contain an interval. This means $h \circ \gamma : [0, 1] \to \mathbb{R}$ is zero on an open interval. Since it is analytic, it must be identically zero on [0, 1]. Therefore $h(\bar{a}) = h(\bar{b}) = 0$.
- We conclude that $h(\bar{x}) = 0$ for any $\bar{x} \in C$, for \bar{a}, \bar{b} were arbitrary points in C.
- Since W has finitely many cells, every point of W must satisfy one of finitely many linear equations over \mathbb{Z} .

A D > A B > A B

Theorem (Dimension of intersection)

Let $V, W \subseteq \mathbb{C}^n$ be irreducible varieties. Then any non-empty irreducible component X of the intersection $V \cap W$ satisfies dim $X \ge \dim V + \dim W - n$.

Definition (Atypical intersection)

Let V, W be varieties in \mathbb{C}^n . A non-empty irreducible component X of $V \cap W$ is said to be *typical* if dim $X = \dim V + \dim W - n$ and *atypical* if dim $X > \dim V + \dim W - n$.

Two curves in \mathbb{C}^2 are likely to intersect, while two curves in \mathbb{C}^3 are not. When they do, we have an atypical intersection.

A D A A B A A B A A

Definition

An algebraic torus is an irreducible algebraic subgroup of $(\mathbb{C}^{\times})^n$ for some positive integer *n*, where \mathbb{C}^{\times} is the multiplicative group of *C*.

A variety defined by equations of the form $y_1^{m_1} \cdots y_n^{m_n} = 1$, where $m_i \in \mathbb{Z}$, is a subgroup of $(\mathbb{C}^{\times})^n$ and can be decomposed into a disjoint union of an algebraic torus (the connected component of the identity element) and its torsion cosets. For example, $y_1^3 y_2^6 = 1$ is the union of three irreducible varieties given by $y_1 y_2^2 = \zeta$ where $\zeta^3 = 1$. Note that an algebraic torus is the image of a \mathbb{Q} -linear subspace of \mathbb{C}^n under the exponential function

Definition

Let $V \subseteq (\mathbb{C}^{\times})^n$ be an algebraic variety. A subvariety $X \subseteq V$ is *atypical* if it is an atypical component of an intersection $V \cap T$ where $T \subseteq (\mathbb{C}^{\times})^n$ is a torsion coset of a torus.

Conjecture (CIT)

Every algebraic variety $V \subseteq (\mathbb{C}^{\times})^n$ contains only finitely many maximal atypical subvarieties.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- \bullet CIT is the difference between Schanuel's conjecture (over $\mathbb{C})$ and its uniform version.
- It was posed by Zilber, then independently by Bombieri-Masser-Zannier.
- Later, Pink proposed a more general conjecture. The general form is now known as the Zilber–Pink conjecture.
- Many special cases are known, e.g. the Mordell-Lang and the Manin-Mumford conjectures.
- Many weak versions and special cases of the Zilber–Pink conjecture have been proven using o-minimality. An important ingredient of those proofs is the Pila–Wilkie counting theorem.

Image: A math a math

Definition (Height)

For $a, b \in \mathbb{Z}$ with gcd(a, b) = 1 define H(a/b) = max(|a|, |b|), and for $\bar{x} \in \mathbb{Q}^n$ set $H(\bar{x}) = max_i H(x_i)$. For a set $Z \subseteq \mathbb{R}^n$ and T > 0 let $Z(\mathbb{Q}, T) := \{x \in Z \cap \mathbb{Q}^n : H(\bar{x}) \leq T\}$ and $N(Z, T) := |Z(\mathbb{Q}, T)|$.

Definition

For a set $Z \subseteq \mathbb{R}^n$ the algebraic part of Z, denoted Z^{alg} , is the union of all positive dimensional connected semi-algebraic subsets of Z.

Theorem

Let $Z \subseteq \mathbb{R}^n$ be definable in an o-minimal expansion of \mathbb{R} , and let $\epsilon > 0$. Then there is a constant $c = c(Z, \epsilon)$ such that for all T we have $N(Z \setminus Z^{alg}, T) \leq cT^{\epsilon}$.

Example

Let $Z \subseteq \mathbb{R}^2$ be given by $y = 2^x$. Then $Z^{alg} = \emptyset$ (why?). If $(x, y) \in Z \cap \mathbb{Q}^2$ then $(x, y) \in \mathbb{Z}^2$. Hence N(Z, T) grows logarithmically in T.

イロト イポト イヨト イヨト

Theorem

If a variety $V \subseteq (\mathbb{C}^{\times})^n$ contains no cosets of positive dimensional algebraic tori, then V contains finitely many torsion points, i.e. points all coordinates of which are roots of unity.

- Let $\pi: \mathbb{C}^n \to (\mathbb{C}^{\times})^n$ be the map $(z_1, \ldots, z_n) \mapsto (e^{2\pi i z_1}, \ldots, e^{2\pi i z_n}).$
- $\pi(\bar{z})$ is a torsion point in $(\mathbb{C}^{\times})^n$ iff $\bar{z} \in \mathbb{Q}^n$.
- If $W \subseteq (\mathbb{C}^{\times})^2$ is given by $w_1^2 w_2^3 = 1$ then $\pi^{-1}(W)$ is the union of all lines $2z_1 + 3z_2 = k, \ k \in \mathbb{Z}$. So $\pi^{-1}(W)^{\text{alg}} = \pi^{-1}(W)$.
- More generally, for an algebraic variety W ⊆(C[×])ⁿ the set π⁻¹(W)^{alg} is the union of translates of positive dimensional Q-linear spaces contained in π⁻¹(W).
- π is not definable in any o-minimal structure but its restriction to $F = \{z \in \mathbb{C} : 0 \le \operatorname{Re} z < 1\}^n$ is definable in $\mathbb{R}_{\operatorname{an,exp}}$.
- Let Z := π⁻¹(V) ∩ F. Then Z^{alg} is a union of intersections of translates of Q-linear spaces with F. These are indeed semi-algebraic.
- In particular, if V does not contain any cosets of algebraic subtori then $\pi^{-1}(V)^{alg} = \emptyset$ and $Z^{alg} = \emptyset$.
- So the Pila–Wilkie theorem gives a bound on the number of rational points in Z of bounded height, that is, Z contains "few" rational points.
- One can get from this to a finiteness statement.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで