Introduction to o-minimality and applications

 An excursion into Model Theory and its applications LMS online lecture series - Fall 2020Vahagn Aslanyan
University of East Anglia
24 November 2020

Part I: o-minimality

Ordered field of the reals

- Consider the ordered field of the reals $(\mathbb{R} ;+, \cdot,<, 0,1)$.
- The formula $\varphi(x):=\exists y\left(x^{2}-1 \geq y^{2}\right)$ defines the set $(-\infty,-1) \cup\{-1\} \cup\{1\} \cup(1, \infty)$.
- By quantifier elimination any formula $\varphi(x)$ is equivalent to a Boolean combination of formulas of the form $p(x)=0$ and $p(x)>0$ where $p(X) \in \mathbb{R}[X]$. Hence every definable set in \mathbb{R} is a finite union of points and open intervals.
- This means that all definable sets in one variable can be defined (with parameters) in the language $\{<\}$.
- Structures with this property are said to be o-minimal.

Conventions

- Throughout, $\mathcal{M}:=(M ;<, \ldots)$ will be a structure with $(M ;<) \models$ DLO.
- An interval is an open interval with endpoints in $M \cup\{ \pm \infty\}$.
- Definable means definable with parameters.
- For a function f its graph is denoted by $\Gamma(f)$.
- Let $X \subseteq M^{n}$. A function $f: X \rightarrow M^{k}$ is definable if $\Gamma(f)$ is a definable subset of M^{n+k}.
- There is a natural topology on M - the order topology. On M^{n} we use the product topology.

Definition of o-minimality

Definition

$\mathcal{M}=(M ;<, \ldots)$ is o-minimal if every definable subset of M is a finite union of points and intervals.

Example

- ($\mathbb{Q} ;<),(\mathbb{R} ;<)$
- $(\mathbb{Q} ;<,+)$
- $(\mathbb{R} ;+, \cdot,<)$

Example (Non-examples)

- $(\mathbb{R} ;+, \cdot, \sin ,<)$

- ($\mathbb{Q} ;+, \cdot,<)$
- $\mathbb{C}_{\text {exp }}:=(\mathbb{C} ;+, \cdot, \exp)$ (here we identify \mathbb{C} with $\left.\mathbb{R}^{2}\right)$

The topology on an o-minimal structure is "tame".

Further examples

- Let \mathbb{R}_{an} be the expansion of $(\mathbb{R} ;+, \cdot,<)$ by restricted analytic functions: for each real analytic function defined on an open set containing $[0,1]^{n}$ we have a function symbol for its restriction to $[0,1]^{n}$. This is o-minimal.
- $\left.\sin \right|_{[0,2 \pi]}$ is definable in \mathbb{R}_{an}, for $\left.\sin (2 \pi x)\right|_{[0,1]}$ is definable.
- More generally, if $f: U \rightarrow \mathbb{R}$ is an analytic function defined on an open domain $U \subseteq \mathbb{R}^{n}$ and $B \subseteq U$ is a bounded closed box then $\left.f\right|_{B}$ is definable in $\mathbb{R}_{\text {an }}$.
- Is $\left.\sin \left(\frac{1}{x}\right)\right|_{(0,1)}$ definable in $\mathbb{R}_{\text {an }}$?
- $\mathbb{R}_{\exp }:=(\mathbb{R} ;+, \cdot, \exp ,<)$ is o-minimal (Wilkie, 1996).
- $\mathbb{R}_{\mathrm{an}, \exp }$ is the expansion of \mathbb{R}_{an} by the exponential function $\exp : \mathbb{R} \rightarrow \mathbb{R}^{>0}$. This is also o-minimal.
- Let $D:=\{z \in \mathbb{C}: 0 \leq \operatorname{Im} z<2 \pi\}$. Then the restriction of the complex exponentiation to D is definable in $\mathbb{R}_{\text {an }, \text { exp }}$.

Monotonicity theorem

Theorem (Monotonicity theorem)

Let $f: I \rightarrow M$ be a definable function on an interval $I=(a, b)$. Then there are points $a=a_{0}<a_{1}<\ldots<a_{n}=b$ such that on each interval $\left(a_{i}, a_{i+1}\right)$ the function f is either constant or strictly monotonic and continuous.

Sketch proof.

It suffices to show that for any definable function $f: I \rightarrow M$ there is a subinterval of I on which f is constant or strictly monotonic and continuous. Indeed, let $X \subseteq I$ be the set of all points x such that f is constant or strictly monotonic and continuous on a neighbourhood of x. If $I \backslash X$ is infinite then it contains an interval which is a contradiction. So $I \backslash X$ is finite and we are done.

We prove that on an infinite subinterval f is constant or injective. We may assume all fibres $f^{-1}(y)$ are finite, for otherwise f would be constant on a subinterval. Then $f(I)$ is infinite and so contains an interval J. Define $g: J \rightarrow I$ by $g(y):=\min f^{-1}(y)$. Then g is injective and the image $g(J)$ contains an interval K. Hence, $\left.f\right|_{K}$ is injective.

Uniform finiteness

For $Y \subseteq M^{n+1}$ and $\bar{a} \in M^{n}$ let $Y_{\bar{a}}:=\{y \in M:(\bar{a}, y) \in Y\}$.

Theorem

Let $Y \subseteq M^{2}$ be a definable set. Then there is a number N such that for any a $\in M$ if Y_{a} is finite then $\left|Y_{a}\right| \leq N$.

Exercise

Let $Y \subseteq M^{2}$ be definable such that Y_{a} is finite for each a. Show that there are points $-\infty=a_{0}<a_{1}<\ldots<a_{k+1}=+\infty$ such that the intersection of Y with each vertical strip $\left(a_{i}, a_{i+1}\right) \times M$ has the form $\Gamma\left(f_{i, 1}\right) \cup \ldots \cup \Gamma\left(f_{i, m_{i}}\right)$ where each $f_{i, j}:\left(a_{i}, a_{i+1}\right) \rightarrow M$ is a definable continuous function and with $f_{i, 1}(x)<\ldots<f_{i, m_{i}}(x)$ for all $x \in\left(a_{i}, a_{i+1}\right)$.

Cells

- For a definable set $X \subseteq M^{n}$ let $C(X):=\{f: X \rightarrow M: f$ is definable and continuous $\}$. Let also $C_{\infty}(X)=C(X) \cup\{-\infty,+\infty\}$ where $-\infty,+\infty$ are regarded as constant functions on X.
- For $f, g \in C_{\infty}(X)$ write $f<g$ if $f(\bar{x})<g(\bar{x})$ for all $\bar{x} \in X$. In this case define $(f, g)_{X}:=\{(\bar{x}, y) \in X \times M: f(\bar{x})<y<g(\bar{x})\}$.

Definition

Let $\bar{i}:=\left(i_{1}, \ldots, i_{m}\right) \in\{0,1\}^{m}$. An \bar{i}-cell is a definable subset of M^{m} defined inductively on m as follows.

- A (0)-cell is a point and a (1)-cell is an open interval in M.
- Suppose \bar{i}-cells have been defined. Then an $(\bar{i}, 0)$-cell is the graph $\Gamma(f)$ of a function $f \in C(X)$ where X is an \bar{i}-cell. An $(\bar{i}, 1)$-cell is a set of the form $(f, g)_{X}$ where X is an \bar{i}-cell and $f, g \in C_{\infty}(X)$ and $f<g$.
A cell is an \bar{i}-cell for some \bar{i}.

Cell decomposition

Definition

A decomposition of M^{n} is a partition of M^{n} into finitely many cells defined as follows by induction.

- A decomposition of M is a partition of M into a union of finitely many disjoint cells.
- A decomposition of M^{n+1} is a partition of M^{n+1} into finitely many cells the projections of which to the first n coordinates form a decomposition of M^{n}.

Theorem

I_{n} For any definable sets $A_{1}, \ldots, A_{k} \subseteq M^{n}$ there is a decomposition of M^{n} which partitions each A_{i}.
$I I_{n}$ Given a definable function $f: X \rightarrow M$ with $X \subseteq M^{n}$, there is a decomposition of M^{n} partitioning X such that for any cell $C \subseteq X$ the restriction $\left.f\right|_{C}: C \rightarrow M$ is continuous.

Definable sets in \mathbb{R}^{2}

(3) $(\overline{\mathbb{R}} ;+, \cdot,<) \quad \overline{\mathbb{R}^{2} \backslash}\{0\}$

(4) $(\bar{R} ;+, \cdot, \exp ,<)$

$$
\exists z\left(x z=1 \wedge 0 \leqslant y \leqslant e^{z}\right)
$$

$$
0 \leq y \leq e^{\frac{1}{x}}
$$

Consequences

Theorem

Let $Y \subseteq M^{n+1}$ be a definable set. Then there is a number k such that for any $\bar{a} \in M^{n}$ if $Y_{\bar{a}}$ is finite then $\left|Y_{\bar{a}}\right| \leq k$. Hence, the quantifier \exists^{∞} is first-order expressible.

Theorem

Let \mathcal{M} and \mathcal{N} be elementarily equivalent ordered structures. If \mathcal{M} is o-minimal then so is \mathcal{N}.

Proof.

Let $\phi(x, \bar{b})$ define a set $X_{\bar{b}}$ in N. The boundary of $X_{\bar{b}}$ is definable (uniformly in \bar{b}) by a formula $\psi(x, \bar{b})$. For every $\bar{a} \in M^{|\bar{b}|}$ the formula $\psi(x, \bar{a})$ defines the boundary of $\phi(x, \bar{a})$ and is finite. By uniform finiteness, $\psi(x, \bar{a})$ has at most k elements for some k independent of \bar{a}. This is part of the theory of \mathcal{M}, hence also of the theory of \mathcal{N}. Thus, $\psi(x, \bar{b})$ has at most k elements, which means $X_{\bar{b}}$ is a union of finitely many points and intervals.

Consequences

Definition

- A subset $X \subseteq M^{n}$ is definably connected if there are no definable open sets U_{1}, U_{2} such that $X \subseteq U_{1} \cup U_{2}, X \cap U_{1} \cap U_{2}=\emptyset$ and $X \cap U_{1} \neq \emptyset, X \cap U_{2} \neq \emptyset$.
- For a definable set $X \subseteq M^{n}$ a definably connected component of X is a maximal definably connected subset of X.

Proposition

Every definable set $X \subseteq M^{n}$ has finitely many definably connected components. They are definable, open and closed in X and form a partition of X.

Proof.

Let $X=\cup_{i} C_{i}$ be a cell decomposition of X, and let Y be a definably connected component of X. Each C_{i} is definably connected, hence either $C_{i} \subseteq Y$ or $C_{i} \cap Y=\emptyset$. Therefore, Y is a union of cells.

Proposition

In a parametric family of definable sets the number of connected components is bounded.

Dimension

Definition

For a definable set X let $\operatorname{dim} X:=\max \left\{i_{1}+\ldots+i_{m}: X\right.$ contains an $\left(i_{1}, \ldots, i_{m}\right)$-cell $\}$. We also set $\operatorname{dim} \emptyset=-\infty$.

- A definable set has dimension 0 if and only if it is finite.
- $\operatorname{dim} M^{n}=n$.
- Let $X \subseteq M^{n}$ be definable. Then $\operatorname{dim} X$ is the largest integer k for which some projection of X to M^{k} has non-empty interior in M^{k}.

Definition

For a subset $A \subseteq M$ the algebraic closure of A is the union of all finite definable sets over A, and the definable closure of A is the union of all definable singletons over A. For instance, in $(\mathbb{C} ;+, \cdot)$ we have $\sqrt{2} \in \operatorname{acl}(\mathbb{Q}) \backslash \operatorname{dcl}(\mathbb{Q})$, while in $(\mathbb{R} ;+, \cdot)$ we have $\sqrt{2} \in \operatorname{dcl}(\mathbb{Q})$.

Theorem

In an o-minimal structure acl = dcl, and this operator defines a pregeometry. Its dimension agrees with the dimension function defined above.

Maps with finite fibres

Theorem

Let $X \subseteq M^{n}$ be definable and let $f: X \rightarrow M^{k}$ be a definable map such that for any $x \in X$ the fibre $f^{-1}(f(x))$ is finite. Then $\operatorname{dim} f(X)=\operatorname{dim} X$.

Sketch proof.

Let $\Gamma^{\prime}(f):=\{(f(x), x): x \in X\}$ and let $\pi: \Gamma^{\prime}(f) \rightarrow f(X)$ be the projection map. Observe that the map $x \mapsto(f(x), x)$ is a definable bijection from X to $\Gamma^{\prime}(f)$, hence $\operatorname{dim} X=\operatorname{dim} \Gamma^{\prime}(f)$. Write $\Gamma^{\prime}(f)=\cup_{i} C_{i}$ using cell decomposition. For each cell C_{i} the projection $\pi\left(C_{i}\right)$ is a cell and for $y \in \pi\left(C_{i}\right)$ the fibre $\left\{x \in X:(y, x) \in C_{i}\right\}$ is also a cell. Since it is finite, it must be a singleton. Therefore, π is a bijection from C_{i} to $\pi\left(C_{i}\right)$, so $\operatorname{dim} C_{i}=\operatorname{dim} \pi\left(C_{i}\right)$. Hence $\operatorname{dim} f(X)=\operatorname{dim} \Gamma^{\prime}(f)$.

Exercises

Let $\mathcal{M}=(M ;<, \ldots)$ be an o-minimal structure.
(1) Find a cell decomposition of $\mathbb{R}^{2} \backslash X$ where X is a finite set.
(2) Does the cell decomposition theorem hold for infinitely many definable sets A_{1}, A_{2}, \ldots ?
(3) Let $\pi: M^{n+k} \rightarrow M^{k}$ be the projection on the firs n coordinates. Prove that if $C \subseteq M^{n+k}$ is a cell and $a \in \pi C$ then $C_{a}=\left\{y \in M^{k}:(a, y) \in C\right\}$ is a cell.
(0) Show that a cell in M^{n} of dimension n is open.
(3) Show that cells are definably connected.

- Show that if \mathcal{R} is an o-minimal expansion of $(\mathbb{R} ;<)$ then a definable set $X \subseteq \mathbb{R}^{k}$ is connected if and only if it is definably connected.
(1) Let $X \subseteq M^{n}$ be definable. Show that $\operatorname{dim}(\bar{X} \backslash X)<\operatorname{dim} X$, where \bar{X} is the topological closure of X.
(8) Show that if $X \subseteq M^{n}$ is a cell of dimension k then it is definably homeomorphic to an open subset of M^{k}.
(0 Show that if $X \subseteq M^{n}, Y \subseteq M^{k}$ are definable sets and there is a definable bijection between them then $\operatorname{dim} X=\operatorname{dim} Y$.
cto Let $X, Y \subseteq M^{n}$ be definable. Show that $\operatorname{dim}(X \cup Y)=\max \{\operatorname{dim} X, \operatorname{dim} Y\}$.

Part II: Applications

Holomorphic maps with discrete fibres

Theorem

Let $U \subseteq \mathbb{C}^{n}$ be an open domain and let $f: U \rightarrow \mathbb{C}^{n}$ be a holomorphic map all fibres of which are discrete. Then $f(U)$ has a non-empty interior.

This is a weak version of Remmert's open mapping theorem.

Sketch proof.

Identify \mathbb{C} with \mathbb{R}^{2}. For some box $B \subseteq U$ the restriction $\left.f\right|_{B}$ is definable in \mathbb{R}_{an}. Hence, by the "fibre dimension theorem" for o-minimal structures, $\operatorname{dim}_{\mathbb{R}} f(B)=\operatorname{dim}_{\mathbb{R}} B=2 n$. Hence $f(B) \subseteq \mathbb{R}^{2 n}$ contains a cell of dimension $2 n$, which is open.

Schanuel's conjecture

Conjecture (Schanuel's conjecture)

Let $z_{1}, \ldots, z_{n} \in \mathbb{C}$ be \mathbb{Q}-linearly independent. Then

$$
\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(z_{1}, \ldots, z_{n}, e^{z_{1}}, \ldots, e^{z_{n}}\right) \geq n .
$$

- Here td stands for transcendence degree. Recall that for two fields $K \subseteq L$, some elements $a_{1}, \ldots, a_{n} \in L$ are called algebraically independent over K if $p\left(a_{1}, \ldots, a_{n}\right) \neq 0$ for any non-zero polynomial p with coefficients from K, and $\operatorname{td}_{K} L$ (often denoted by $\operatorname{td}(L / K)$) is the cardinality of a maximal set of algebraically independent elements from L over K.
- Schanuel's conjecture is considered out of reach.
- Zilber explored the model theory of $\mathbb{C}_{\text {exp }}:=(\mathbb{C} ;+, \cdot$, exp $)$, and constructed algebraically closed fields of characteristic 0 with a unary function, called pseudo-exponentiation, which mimics some of the basic properties of the complex exponential function and satisfies an analogue of Schanuel's conjecture.
- Zilber's work gave rise to two major conjectures: the Exponential Algebraic Closedness conjecture, and the Conjecture on Intersections with Tori.
- A functional analogue of Schanuel's conjecture, known as the Ax-Schanuel theorem, can be proven using o-minimality.

Schanuel's conjecture over \mathbb{R}

Conjecture $\left(\mathrm{SC}_{\mathbb{R}}\right)$

Let $x_{1}, \ldots, x_{n} \in \mathbb{R}$ be \mathbb{Q}-linearly independent. Then $\operatorname{td}_{\mathbb{Q}} \mathbb{Q}\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right) \geq n$.

- Let $T_{\text {exp }}:=\mathrm{Th}\left(\mathbb{R}_{\exp }\right)$. Tarski asked if $T_{\text {exp }}$ is decidable. Macintyre and Wilkie proved that if Schanuel's conjecture holds for the reals then $T_{\text {exp }}$ is decidable.
- A natural question is whether $\mathrm{SC}_{\mathbb{R}}$ is part of $T_{\exp }$. For this, one needs a uniform version of the conjecture.

Conjecture $\left(\mathrm{SC}_{\mathbb{R}}\right)$

Let $V \subseteq \mathbb{R}^{2 n}$ be an algebraic variety over \mathbb{Q} with $\operatorname{dim} V<n$. If $\left(x_{1}, \ldots, x_{n}, e^{x_{1}}, \ldots, e^{x_{n}}\right) \in V$ then there are integers m_{1}, \ldots, m_{n}, not all zero, such that $\sum_{k} m_{k} x_{k}=0$.

Conjecture (Uniform $\mathrm{SC}_{\mathbb{R}}$)

Let $V \subseteq \mathbb{R}^{2 n}$ be an algebraic variety over \mathbb{Q} with $\operatorname{dim} V<n$. Then there is a natural number N such that if $\left(x_{1}, \ldots, x_{n}, e^{x_{\mathbf{1}}}, \ldots, e^{x_{n}}\right) \in V$ then there are integers $m_{1}, \ldots, m_{n} \in[-N, N]$, not all zero, such that $\sum_{k} m_{k} x_{k}=0$.

$\mathrm{SC}_{\mathbb{R}} \Rightarrow \mathrm{USC}_{\mathbb{R}}$

Theorem (Kirby-Ziber, 2004)

Schanuel's conjecture over \mathbb{R} implies its uniform version.
If we work in an expansion of \mathbb{R} and in the definition of cells we require the functions f, g to be analytic then we get analytic cells. It is know that $\mathbb{R}_{\exp }$ has analytic cell decomposition.

Lemma

Let \mathcal{R} be an expansion of \mathbb{R}. If $C \subseteq \mathbb{R}^{n}$ is a cell of dimension m then there are an open box $B \subseteq \mathbb{R}^{m}$ (a product of m open intervals in \mathbb{R}) and a definable homeomorphism $\theta: C \rightarrow B$. If C is an analytic cell then θ can be chosen to be an analytic diffeomorphism.

Lemma

Let \mathcal{R} be an expansion of \mathbb{R} and let $C \subseteq \mathbb{R}^{n}$ be an analytic cell. For any points $a, b \in C$ there is a definable analytic path from a to b contained in C, that is, an analytic map $\gamma:[0,1] \rightarrow C$ such that $\gamma(0)=a, \gamma(1)=b$.

Proof of the theorem

- Assume Schanuel's conjecture over \mathbb{R}.
- Let $V \subseteq \mathbb{R}^{2 n}$ be an algebraic variety over \mathbb{Q} of dimension $<n$. The set $W:=\left\{\bar{x} \in \mathbb{R}^{n}:\left(\bar{x}, e^{\bar{x}}\right) \in V\right\}$ is definable in $\mathbb{R}_{\exp }$, hence can be decomposed into a finite union of analytic cells.
- Pick a cell $C \subseteq W$ and points $\bar{a}, \bar{b} \in C$. Let $\gamma:[0,1] \rightarrow C$ be a definable analytic path from \bar{a} to \bar{b} in C.
- $B y \mathrm{SC}_{\mathbb{R}}$ every point $\bar{x} \in \operatorname{Im}(\gamma)$ satisfies a linear equation $\sum_{k} m_{k} x_{k}=0$. Since there are countably many possible linear equations, one of them must be satisfied by infinitely many points. Thus for some linear map $h(\bar{x})=\sum_{k} m_{k} x_{k}$ the set $\{t \in[0,1]: h(\gamma(t))=0\}$ is infinite.
- It is a definable subset of $[0,1]$, hence it must contain an interval. This means $h \circ \gamma:[0,1] \rightarrow \mathbb{R}$ is zero on an open interval. Since it is analytic, it must be identically zero on $[0,1]$. Therefore $h(\bar{a})=h(\bar{b})=0$.
- We conclude that $h(\bar{x})=0$ for any $\bar{x} \in C$, for \bar{a}, \bar{b} were arbitrary points in C.
- Since W has finitely many cells, every point of W must satisfy one of finitely many linear equations over \mathbb{Z}.

Atypical intersections

Theorem (Dimension of intersection)

Let $V, W \subseteq \mathbb{C}^{n}$ be irreducible varieties. Then any non-empty irreducible component X of the intersection $V \cap W$ satisfies $\operatorname{dim} X \geq \operatorname{dim} V+\operatorname{dim} W-n$.

Definition (Atypical intersection)

Let V, W be varieties in \mathbb{C}^{n}. A non-empty irreducible component X of $V \cap W$ is said to be typical if $\operatorname{dim} X=\operatorname{dim} V+\operatorname{dim} W-n$ and atypical if $\operatorname{dim} X>\operatorname{dim} V+\operatorname{dim} W-n$.

Two curves in \mathbb{C}^{2} are likely to intersect, while two curves in \mathbb{C}^{3} are not. When they do, we have an atypical intersection.

CIT

Definition

An algebraic torus is an irreducible algebraic subgroup of $\left(\mathbb{C}^{\times}\right)^{n}$ for some positive integer n, where \mathbb{C}^{\times}is the multiplicative group of C.

A variety defined by equations of the form $y_{1}^{m_{1}} \cdots y_{n}^{m_{n}}=1$, where $m_{i} \in \mathbb{Z}$, is a subgroup of $\left(\mathbb{C}^{\times}\right)^{n}$ and can be decomposed into a disjoint union of an algebraic torus (the connected component of the identity element) and its torsion cosets. For example, $y_{1}^{3} y_{2}^{6}=1$ is the union of three irreducible varieties given by $y_{1} y_{2}^{2}=\zeta$ where $\zeta^{3}=1$.
Note that an algebraic torus is the image of a \mathbb{Q}-linear subspace of \mathbb{C}^{n} under the exponential function.

Definition

Let $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ be an algebraic variety. A subvariety $X \subseteq V$ is atypical if it is an atypical component of an intersection $V \cap T$ where $T \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ is a torsion coset of a torus.

Conjecture (CIT)

Every algebraic variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ contains only finitely many maximal atypical subvarieties.

Some remarks

- CIT is the difference between Schanuel's conjecture (over \mathbb{C}) and its uniform version.
- It was posed by Zilber, then independently by Bombieri-Masser-Zannier.
- Later, Pink proposed a more general conjecture. The general form is now known as the Zilber-Pink conjecture.
- Many special cases are known, e.g. the Mordell-Lang and the Manin-Mumford conjectures.
- Many weak versions and special cases of the Zilber-Pink conjecture have been proven using o-minimality. An important ingredient of those proofs is the Pila-Wilkie counting theorem.

Pila-Wilkie counting theorem

Definition (Height)

For $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$ define $H(a / b)=\max (|a|,|b|)$, and for $\bar{x} \in \mathbb{Q}^{n}$ set
$H(\bar{x})=\max _{i} H\left(x_{i}\right)$.
For a set $Z \subseteq \mathbb{R}^{n}$ and $T>0$ let $Z(\mathbb{Q}, T):=\left\{x \in Z \cap \mathbb{Q}^{n}: H(\bar{x}) \leq T\right\}$ and $N(Z, T):=|Z(\mathbb{Q}, T)|$.

Definition

For a set $Z \subseteq \mathbb{R}^{n}$ the algebraic part of Z, denoted $Z^{\text {alg }}$, is the union of all positive dimensional connected semi-algebraic subsets of Z.

Theorem

Let $Z \subseteq \mathbb{R}^{n}$ be definable in an o-minimal expansion of \mathbb{R}, and let $\epsilon>0$. Then there is a constant $c=c(Z, \epsilon)$ such that for all T we have $N\left(Z \backslash Z^{\text {alg }}, T\right) \leq c T^{\epsilon}$.

Example

Let $Z \subseteq \mathbb{R}^{2}$ be given by $y=2^{x}$. Then $Z^{\text {alg }}=\emptyset$ (why?). If $(x, y) \in Z \cap \mathbb{Q}^{2}$ then $(x, y) \in \mathbb{Z}^{2}$. Hence $N(Z, T)$ grows logarithmically in T.

An example

Theorem

If a variety $V \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ contains no cosets of positive dimensional algebraic tori, then V contains finitely many torsion points, i.e. points all coordinates of which are roots of unity.

- Let $\pi: \mathbb{C}^{n} \rightarrow\left(\mathbb{C}^{\times}\right)^{n}$ be the map $\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(e^{2 \pi i z_{1}}, \ldots, e^{2 \pi i z_{n}}\right)$.
- $\pi(\bar{z})$ is a torsion point in $\left(\mathbb{C}^{\times}\right)^{n}$ iff $\bar{z} \in \mathbb{Q}^{n}$.
- If $W \subseteq\left(\mathbb{C}^{\times}\right)^{2}$ is given by $w_{1}^{2} w_{2}^{3}=1$ then $\pi^{-1}(W)$ is the union of all lines $2 z_{1}+3 z_{2}=k, k \in \mathbb{Z}$. So $\pi^{-1}(W)^{\text {alg }}=\pi^{-1}(W)$.
- More generally, for an algebraic variety $W \subseteq\left(\mathbb{C}^{\times}\right)^{n}$ the set $\pi^{-1}(W)^{\text {alg }}$ is the union of translates of positive dimensional \mathbb{Q}-linear spaces contained in $\pi^{-1}(W)$.
- π is not definable in any o-minimal structure but its restriction to $F=\{z \in \mathbb{C}: 0 \leq \operatorname{Re} z<1\}^{n}$ is definable in $\mathbb{R}_{\text {an, } \exp }$.
- Let $Z:=\pi^{-1}(V) \cap F$. Then $Z^{\text {alg }}$ is a union of intersections of translates of \mathbb{Q}-linear spaces with F. These are indeed semi-algebraic.
- In particular, if V does not contain any cosets of algebraic subtori then $\pi^{-1}(V)^{\text {alg }}=\emptyset$ and $Z^{\text {alg }}=\emptyset$.
- So the Pila-Wilkie theorem gives a bound on the number of rational points in Z of bounded height, that is, Z contains "few" rational points.
- One can get from this to a finiteness statement.

